Applications of uniform convexity of noncommutative $L^{p}$-spaces
HTML articles powered by AMS MathViewer
- by Hideki Kosaki
- Trans. Amer. Math. Soc. 283 (1984), 265-282
- DOI: https://doi.org/10.1090/S0002-9947-1984-0735421-6
- PDF | Request permission
Abstract:
We consider noncommutative ${L^p}$-spaces, $1 < p < \infty$, associated with a von Neumann algebra, which is not necessarily semifinite, and obtain some consequences of their uniform convexity. Among other results, we obtain (i) the norm continuity of the "absolute value part" map from each ${L^p}$-space onto its positive part; (ii) a certain continuity result on Radon-Nikodym derivatives in the context of positive cones introduced by H. Araki; and (iii) the necessary and sufficient condition for certain ${L^p}$-norm inequalities to become equalities. Some dominated convergence theorems for a probability gage are also considered.References
- Huzihiro Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. 50 (1974), 309–354. MR 350437, DOI 10.2140/pjm.1974.50.309
- Huzihiro Araki, Relative entropy for states of von Neumann algebras. II, Publ. Res. Inst. Math. Sci. 13 (1977/78), no. 1, 173–192. MR 0454656, DOI 10.2977/prims/1195190105
- Huzihiro Araki and Tetsuya Masuda, Positive cones and $L_{p}$-spaces for von Neumann algebras, Publ. Res. Inst. Math. Sci. 18 (1982), no. 2, 759–831 (339–411). MR 677270, DOI 10.2977/prims/1195183577
- Huzihiro Araki and Shigeru Yamagami, An inequality for Hilbert-Schmidt norm, Comm. Math. Phys. 81 (1981), no. 1, 89–96. MR 630332, DOI 10.1007/BF01941801
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 167830, DOI 10.4064/sm-24-2-113-190
- Alain Connes, Une classification des facteurs de type $\textrm {III}$, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133–252 (French). MR 341115, DOI 10.24033/asens.1247
- A. Connes, On the spatial theory of von Neumann algebras, J. Functional Analysis 35 (1980), no. 2, 153–164. MR 561983, DOI 10.1016/0022-1236(80)90002-6
- Uffe Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), no. 2, 271–283. MR 407615, DOI 10.7146/math.scand.a-11606
- Uffe Haagerup, $L^{p}$-spaces associated with an arbitrary von Neumann algebra, Algèbres d’opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977) Colloq. Internat. CNRS, vol. 274, CNRS, Paris, 1979, pp. 175–184 (English, with French summary). MR 560633
- Frank Hansen, An operator inequality, Math. Ann. 246 (1979/80), no. 3, 249–250. MR 563403, DOI 10.1007/BF01371046 —, Les espaces ${L^p}$ d’une algébre de von Neumann, J. Funct. Anal. 40 (1981), 151 -169.
- Hideki Kosaki, Positive cones associated with a von Neumann algebra, Math. Scand. 47 (1980), no. 2, 295–307. MR 612702, DOI 10.7146/math.scand.a-11891
- Hideki Kosaki, Positive cones and $L^{p}$-spaces associated with a von Neumann algebra, J. Operator Theory 6 (1981), no. 1, 13–23. MR 636997 —, Applications of the complex interpolation method to a von Neumann algebra (Non-commutative ${L^p}$-spaces), J. Funct. Anal, (to appear).
- Hideki Kosaki, Remarks on positive cones associated with a von Neumann algebra, Tohoku Math. J. (2) 33 (1981), no. 4, 587–591. MR 643238, DOI 10.2748/tmj/1178229358 G. Köthe, Topological vector spaces. I, Springer-Verlag, Berlin and New York, 1969.
- R. A. Kunze, $L_{p}$ Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc. 89 (1958), 519–540. MR 100235, DOI 10.1090/S0002-9947-1958-0100235-1
- Charles A. McCarthy, $c_{p}$, Israel J. Math. 5 (1967), 249–271. MR 225140, DOI 10.1007/BF02771613
- Edward Nelson, Notes on non-commutative integration, J. Functional Analysis 15 (1974), 103–116. MR 0355628, DOI 10.1016/0022-1236(74)90014-7
- A. R. Padmanabhan, Probabilistic aspects of von Neumann algebras, J. Functional Analysis 31 (1979), no. 2, 139–149. MR 525948, DOI 10.1016/0022-1236(79)90058-2 M. Reed and B. Simon, Methods of modern mathematical physics, Vols. I, II, Academic Press, New York, 1972, 1975.
- I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401–457. MR 54864, DOI 10.2307/1969729
- Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149, DOI 10.1007/BFb0064579
- Christian F. Skau, Positive selfadjoint extensions of operators affiliated with a von Neumann algebra, Math. Scand. 44 (1979), no. 1, 171–195. MR 544585, DOI 10.7146/math.scand.a-11801
- W. Forrest Stinespring, Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math. Soc. 90 (1959), 15–56. MR 102761, DOI 10.1090/S0002-9947-1959-0102761-9
- M. Takesaki, Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics, Vol. 128, Springer-Verlag, Berlin-New York, 1970. MR 0270168, DOI 10.1007/BFb0065832
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728, DOI 10.1007/978-1-4612-6188-9
- P. K. Tam, Isometries of $L_{p}$-spaces associated with semifinite von Neumann algebras, Trans. Amer. Math. Soc. 254 (1979), 339–354. MR 539922, DOI 10.1090/S0002-9947-1979-0539922-3 M. Terp, ${L^p}$-spaces associated with von Neumann algebras, preprint.
- F. J. Yeadon, Convergence of measurable operators, Proc. Cambridge Philos. Soc. 74 (1973), 257–268. MR 326411, DOI 10.1017/s0305004100048052
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 265-282
- MSC: Primary 46L50
- DOI: https://doi.org/10.1090/S0002-9947-1984-0735421-6
- MathSciNet review: 735421