Decomposability of Radon measures
HTML articles powered by AMS MathViewer
- by R. J. Gardner and W. F. Pfeffer
- Trans. Amer. Math. Soc. 283 (1984), 283-293
- DOI: https://doi.org/10.1090/S0002-9947-1984-0735422-8
- PDF | Request permission
Abstract:
A topological space is called metacompact or metalindelöf if each open cover has a point-finite or point-countable refinement, respectively. It is well known that each Radon measure is expressible as a sum of Radon measures supported on a disjoint family of compact sets, called a concassage. If the unions of measurable subsets of the members of a concassage are also measurable, the Radon measure is called decomposable. We show that Radon measures in a metacompact space are always saturated, and therefore decomposable whenever they are complete. The previous statement is undecidable in ZFC if "metacompact" is replaced by "metalindelöf". The proofs are based on structure theorems for a concassage of a Radon measure. These theorems also show that the union of a concassage of a Radon measure in a metacompact space is a Borel set, which is paracompact in the subspace topology whenever the main space is regular.References
- D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge University Press, London-New York, 1974. MR 0454575
- D. H. Fremlin, Topological measure spaces: two counter-examples, Math. Proc. Cambridge Philos. Soc. 78 (1975), 95–106. MR 377002, DOI 10.1017/S0305004100051525
- D. H. Fremlin, Decomposable measure spaces, Z. Wahrsch. Verw. Gebiete 45 (1978), no. 2, 159–167. MR 510532, DOI 10.1007/BF00715189
- R. J. Gardner and W. F. Pfeffer, Are diffused, regular, Radon measures $\sigma$-finite?, J. London Math. Soc. (2) 20 (1979), no. 3, 485–494. MR 561140, DOI 10.1112/jlms/s2-20.3.485
- R. J. Gardner and W. F. Pfeffer, Some undecidability results concerning Radon measures, Trans. Amer. Math. Soc. 259 (1980), no. 1, 65–74. MR 561823, DOI 10.1090/S0002-9947-1980-0561823-3
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619
- G. Gruenhage and W. F. Pfeffer, When inner regularity of Borel measures implies regularity, J. London Math. Soc. (2) 17 (1978), no. 1, 165–171. MR 485446, DOI 10.1112/jlms/s2-17.1.165
- A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48, Springer-Verlag New York, Inc., New York, 1969. MR 0276438
- Roy A. Johnson, Products of two Borel measures, Trans. Amer. Math. Soc. 269 (1982), no. 2, 611–625. MR 637713, DOI 10.1090/S0002-9947-1982-0637713-6
- I. Juhász, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canadian J. Math. 28 (1976), no. 5, 998–1005. MR 428245, DOI 10.4153/CJM-1976-098-8
- Kenneth Kunen, A compact $L$-space under CH, Topology Appl. 12 (1981), no. 3, 283–287. MR 623736, DOI 10.1016/0166-8641(81)90006-7
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Susumu Okada, Supports of Borel measures, J. Austral. Math. Soc. Ser. A 27 (1979), no. 2, 221–231. MR 531117
- A. J. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), no. 3, 505–516. MR 438292, DOI 10.1112/jlms/s2-14.3.505
- Washek F. Pfeffer, Integrals and measures, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 42, Marcel Dekker, Inc., New York-Basel, 1977. MR 0460580
- Franklin D. Tall, The countable chain condition versus separability—applications of Martin’s axiom, General Topology and Appl. 4 (1974), 315–339. MR 423284
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 283-293
- MSC: Primary 28C15
- DOI: https://doi.org/10.1090/S0002-9947-1984-0735422-8
- MathSciNet review: 735422