The quotient semilattice of the recursively enumerable degrees modulo the cappable degrees
HTML articles powered by AMS MathViewer
- by Steven Schwarz
- Trans. Amer. Math. Soc. 283 (1984), 315-328
- DOI: https://doi.org/10.1090/S0002-9947-1984-0735425-3
- PDF | Request permission
Abstract:
In this paper, we investigate the quotient semilattice $\underline R /\underline M$ of the r.e. degrees modulo the cappable degrees. We first prove the $\underline {R} /\underline {M}$ counterpart of the Friedberg-Muchnik theorem. We then show that minimal elements and minimal pairs are not present in $\underline R /\underline M$. We end with a proof of the $\underline {R} /\underline {M}$ counterpart to Sack’s splitting theorem.References
- Ambos-Spies, On the structure of the recursively enumerable degrees, Ph. D. thesis, University of Munich, 1980.
Ambos-Spies, C. Jockusch, R. Shore and R. Soare, An algebraic decomposition of the recursively enumerable degrees and classes equal to the promptly simple degrees (to appear).
- Richard M. Friedberg, Two recursively enumerable sets of incomparable degrees of unsolvability (solution of Post’s problem, 1944), Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 236–238. MR 84474, DOI 10.1073/pnas.43.2.236
- A. H. Lachlan, Lower bounds for pairs of recursively enumerable degrees, Proc. London Math. Soc. (3) 16 (1966), 537–569. MR 204282, DOI 10.1112/plms/s3-16.1.537
- Wolfgang Maass, Recursively enumerable generic sets, J. Symbolic Logic 47 (1982), no. 4, 809–823 (1983). MR 683156, DOI 10.2307/2273100
- Wolfgang Maass, Richard A. Shore, and Michael Stob, Splitting properties and jump classes, Israel J. Math. 39 (1981), no. 3, 210–224. MR 636890, DOI 10.1007/BF02760850
- A. A. Mučnik, On the unsolvability of the problem of reducibility in the theory of algorithms, Dokl. Akad. Nauk SSSR (N.S.) 108 (1956), 194–197 (Russian). MR 0081859
- Gerald E. Sacks, On the degrees less than 0′, Ann. of Math. (2) 77 (1963), 211–231. MR 146078, DOI 10.2307/1970214
- Gerald E. Sacks, The recursively enumerable degrees are dense, Ann. of Math. (2) 80 (1964), 300–312. MR 166089, DOI 10.2307/1970393 —, Degrees of unsolvability, rev. ed., Ann. of Math. Studies, no. 55, Princeton Univ. Press, Princeton, N. J., 1966.
- J. R. Shoenfield, Applications of model theory to degrees of unsolvability, Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), North-Holland, Amsterdam, 1965, pp. 359–363. MR 0200154
- Robert I. Soare, The infinite injury priority method, J. Symbolic Logic 41 (1976), no. 2, 513–530. MR 429521, DOI 10.2307/2272252
- Robert I. Soare, Recursively enumerable sets and degrees, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1149–1181. MR 508451, DOI 10.1090/S0002-9904-1978-14552-2
- Robert I. Soare, Fundamental methods for constructing recursively enumerable degrees, Recursion theory: its generalisation and applications (Proc. Logic Colloq., Univ. Leeds, Leeds, 1979) London Math. Soc. Lecture Note Ser., vol. 45, Cambridge Univ. Press, Cambridge-New York, 1980, pp. 1–51. MR 598302
- Robert I. Soare, Computational complexity of recursively enumerable sets, Inform. and Control 52 (1982), no. 1, 8–18. MR 693993, DOI 10.1016/S0019-9958(82)80082-X
- C. E. M. Yates, A minimal pair of recursively enumerable degrees, J. Symbolic Logic 31 (1966), 159–168. MR 205851, DOI 10.2307/2269807
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 315-328
- MSC: Primary 03D25; Secondary 03D30
- DOI: https://doi.org/10.1090/S0002-9947-1984-0735425-3
- MathSciNet review: 735425