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Abstract. In this paper, certain spectra B^k) are studied whose behavior qualifies

them as being integral versions of the Brown-Gitler spectra B(k). The bulk of our

work emphasizes the similarities between B^(k) and B(k), shown mainly using the

techniques of Brown and Gitler. In analyzing the homotopy type of B^k), we

provide a free resolution over the Steenrod algebra for its cohomology and study its

Adams spectral sequence. We also list conditions which characterize it at the prime

2. The paper begins, however, on a somewhat different topic, namely, the construc-

tion of a configuration space model for Q2(S3(3)) and other related spaces.

Introduction. In a paper published in 1973, E. H. Brown, Jr., and S. Gitler

described a procedure by which one might conceivably find new characteristic

classes for smooth rt-dimensional manifolds [3]. Their approach was based on

examining the way that certain cohomology operations act on the stable normal

bundle. Much of the motivation for their work stemmed from the problem of

immersing manifolds in Euclidean space. For example, suppose that M is an

n-manifold and let U denote the mod 2 Thorn class of its stable normal bundle.

From standard properties of the Steenrod squares, it follows that if Sq' U ¥= 0, then

M cannot be immersed in Ra+i~1.

Brown and Gitler's idea was to take all those elements of the mod 2 Steenrod

algebra which universally vanish on the Thorn classes of ^-manifolds and use these

"primary" operations as the foundation for a coherent system of higher order

cohomology operations which might then prove useful, say, to detect nonimmer-

sions.

As it turns out, these higher order operations also universally vanish on «-mani-

folds, and the attempt to produce new characteristic classes failed. The story has a

happy ending, though, as Brown and Gitler were able to use their analysis to deduce

the existence of a family of spectra B(k). Since then, the Brown-Gitler spectra have

played an important part in the development of the immersion problem and have

also appeared, startlingly, in certain constructions involving the May filtration of the

double loop space fl253.

This paper partially answers the questions of what happens if one tries to repeat

Brown and Gitler's analysis, but only for Z-orientable ^-manifolds. Our main results
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concern a family of spectra Bx{k) having the following properties:

(0.1) H*(Bx(k)) = A/A{Sql. x(Sq')|/ > k} as /1-modules. (Here, and from now

on, homology and cohomology should be taken with coefficients in Z2, the integers

mod 2, unless otherwise noted. Also, A denotes the mod 2 Steenrod algebra, and x:

A -» A is the canonical antiautomorphism.)

(0.2) Let Z\ = limZ2, denote the 2-adic integers. There is a mapy: Bx(k) -» K{Z\)

such that, for any CW complex X, the induced map of homology theories j*.

#,(&)„( X) -» H„(X; Z$)is surjective, provided that n < 2k + 2.

(0.2') All Z-orientable, closed ^-manifolds are Z?,([«/2])-orientable. That is, given

such a manifold A/, let Uz: T{y) -» K{Z^) represent the Thorn class of its stable

normal bundle. Then there exists UB: T{v) -* Bs([n/2]) such lha.1 jUB = U7.

We shall also prove that (0.1) and (0.2) characterize Bx(k), up to homotopy

2-equivalence; further arguments show that (0.2) and (0.2') are essentially equivalent.

Moreover, By([n/2\) has the smallest possible mod 2 cohomology for any spectrum

possessing the orientability property (0.2'), provided that n is not divisible by 4.

A definition for a family of spectra satisfying (0.1) was first proposed by

Mahowald. We shall base our presentation on Mahowald's definition, but, in an

appendix, we discuss another way in which Bx(k) could be defined.

Our viewpoint is strongly influenced by a desire to display Bx(k) as an integral

version of the Brown-Gitler spectrum B(k). Brown and Gitler originally constructed

B{k) by building a generalized Postnikov tower for it, or, really, the Pontrjagin dual

of such a tower. Normally, one starts with a known spectrum and then builds a

Postnikov tower for it. Brown and Gitler faced the difficulty of trying to use a

Postnikov tower for B(k) in order to prove that it actually exists. Their construction

was quite complicated.

However, in a seemingly unrelated development, the theory of Thorn spectra was

attracting considerable attention, largely due to the techniques and examples of

Mark Mahowald (see [15] for an overview of the subject). Proceeding on the basis of

some of Mahowald's cohomological calculations, R. Cohen [9] and Brown and

Peterson [6] made the discovery that the Brown-Gitler spectra could be realized as

certain Thorn spectra involving the May filtration of 122S3. Because of the complex-

ity of Brown and Gitler's original work, it was surprising, but comforting, to find

that the spectra B(k) could be obtained by these more natural geometric means. Not

surprisingly, it seems quite difficult to use these geometric realizations of B(k) in

direct proofs of the sort of deeper properties that Brown and Gitler obtained via

their Postnikov analysis.

The spectra Bx(k) that we shall study here will be defined geometrically, following

Mahowald, as Thorn spectra (completed at 2). The details of Mahowald's construc-

tion have not yet appeared in print, so, in the appendix, we describe an independent

(non-Thorn spectrum) approach to defining Bx(k). At any rate, there is no question

that Bx{k) exists. Even so, one might try to mimic Brown and Gitler's analysis in

order to obtain deeper homotopy results. Indeed, this is the approach we will take: a

recurrent theme in this paper is to start with properties about the Brown-Gitler

spectrum B(k) and then prove suitable analogues for Bx(k).
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Brown and Gitler's starting point was the construction of an explicit v4-free

resolution of H*B(k). Correspondingly, we shall define ^-modules Cq and differen-

tials d: Cq -» Cq_l such that

(0.3)   • • • Cq -* Cq_l -» • • ■ -> C0 -» H*Bx{k) — 0 is an ,4-free resolution of

H+B^k).
Using this resolution and the Adams spectral sequence then yields:

(0.4a)770(51(/c)) = Z2.

(0.4b) If 1 < q < 4k + 2, then

7Tq{B1(2k)) = irq{B1(2k + l)) = (A{\1,\3,\5,...}/A{\l,\3,...,\2k_l}){l

as groups (and hence as Z2-vector spaces). Here, A is the mod 2 algebra of A. K.

Bousfield et al. [1]; we review some of its properties in §3.1.

In addition, we will define a map ik: Bx(k) -* B(k) and study how it relates the

two spectra:

(0.5) (ik)*\ H*B(k) -» H*Bx{k) is the canonical projection.

(0.6) There exist cofibrations

Bx(2k + 1) ^ Bx(2k + \)'2^1B(2k + 1)

and

ilk

Bx(2k- 1)^ Bx(2k) -»5(2fc).

Moreover, if M2 denotes the Z2 Moore spectrum, then M2 A B^k) = B(2k + 1).

(0.7) (it)»: ^(B^k)) -» trq(B(k)) is injective for 1 < q ^ 2k.

As mentioned above, the Brown-Gitler spectra B(k) play a prominent role in

shaping the statements and proofs of the preceding results. The style of exposition

will be to recite facts about B(k) as they are needed.

In §2, we define the spectra Bx(k), compute H*Bx{k), and establish the cofibra-

tions (0.6). §3 presents the aforementioned free resolution of H*Bx{k), along with

some related resolutions of H*(K(Z)) = A/A{Sq1}. Then, in §4, we analyze the

Adams spectral sequence of Bx(k). Lastly, §5 is devoted to proving the homology

surjection (0.2) and its corollary, the orientability conclusion (0.2'); the method of

proof will then be used to describe various means of characterizing Bx(k), up to

homotopy 2-equivalence.

Now, Bx(k) will be defined as a Thom spectrum over a certain filtration of the

space fl2(53(3)), where 53(3) is the 3-connective cover of S3. In §1, we construct a

configuration space model forfi2(53(3)) involving the space C„X, May's homotopy

approximation to ti"2,nX. Actually, this model, described below, arises as a corollary

to a property of a certain retraction CnG -» G, where G is any abelian topological

group.

(0.8) S22(5'3(3>) is homotopy equivalent to

l(c1,...,ck;x1,...,xk)e C2S1\f\xi = 1  .
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1. An approximation tofl2(S3(3)) and related spaces. Let w: S" ^> K(Z, «) be a

map representing a generator of H"(S"; Z) = Z. Then the homotopy-theoretic fibre

of co, denoted S"(n), is called the ^-connective cover of S".

At present, we are primarily interested in the double loop space Q2(S3(3)). The

reason is that the future sections in this paper are devoted to studying a certain

family of spectra Bx(k), and the space fi2(S3(3)) plays an important, underlying

role in the definition of these spectra. A priori, the geometry of £22(S3(3)) seems

quite intangible. The material in this section was motivated by a desire to find a

manageable geometric model for fl2(53(3)) along the lines of the James reduced

product for Q2Ar[12] or May's "little «-cubes monad" for S2"2"AT16].

In Theorem (1.3), we present such a model, not just for S22(53(3)), but for any

Un(Sn+l{n + l)), 1 < n < oo. In fact, (1.3) is a consequence of a more general

result involving the homotopy fibre of a certain special retraction. We should point

out that the models which we end up with seem quite reasonable; unfortunately, it is

not clear whether they possess the sort of combinatorial convenience that one might

hope for.

The results of this section are not needed anywhere later in this work.

We begin by recounting some constructions of May. Suppose that 1 < n < oo.

Then, given a space X with base point *, define

CnX= UF(R",k)x^Xk/~ .
A = l

Here, F(R", k) = {(cx,.. .,ck)^ (R")k\ c, # Cj if i ¥=j) is the configuration space

of k distinct points in the Euclidean space R", and Xk is the /c-fold Cartesian

product. The symmetric group, I.k, acts on both F(R", k) and Xk by permuting

coordinates. Points of F(R", k) X Xk will be written (cx,...,ck; xx,...,xk), where

(clt...,ck) e F(R", k) and x, e X. Lastly, the equivalence relation ~ in C„X is

generated by the identification

\c1,...,Cj,...,ck;x1,...,Xj,...,xk) ~ \c1,...,Cj,...,ck; x1,...,Xj,...,xk)

whenever x■ = *.

The significance of CnX is given by May's "approximation theorem":

Theorem (1.1) [16]. There is a map B: CnX -* tt"I,"X which is a weak homotopy

equivalence if X is path connected.   □
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The key result of this chapter is the following

Theorem (1.2). Let G be an abelian topological group whose base point is the

identity element 0. Define jx = (inG: CnG -» G by the formula

k

n((c1,...,ck;g1,...,gk))= £g(-
/=i

Let Y = YnG denote the homotopy fibre of p.. Then Y - /x_1(0). Explicitly,

Y= l(ci,...,ck;gi,...,gk)eCfi\Y,g,=*o\.

Proof. The customary way of describing Y is as the pullback of the path fibration

on G:

Y       ->     9G
1 I e

C„G     -       G
v-

Here, 0>G = {a: (1,0) -» (G,0)} is the path space of G and e(a) = a(l). Thus, we

shall regard Y as being

U(c1,...,ck-,g1,...,gk),a)eCfixPG\a(l)- Eg,.

Define a map/: jw_1(0) -» T by the formula

f((cx,...,ck;gx,..,,gk)) = ((cx,...,ck;gx,...,gk),KQ),

where k0 is the constant path at 0 e G.

We intend to show that / is a homotopy equivalence by constructing an explicit

homotopy inverse. However, it takes some work to set this up.

Given 0 < t < 1, define <f>,: R -» R by <f>t(x) = (1 - t)x + (2?/7r)arctan(x). Note

that d(<j>,(x))/dx = 1 - t + 2t/ir{\ + x2) > 0, so <£, is one-to-one. Hence, the maps

<f>, describe an isotopy of R: observe that <j>0 = idR and that <j>x is a homeomorphism

of R onto the interval -1 < x < 1.

Next, define an isotopy \(/t: R" -> /?" by the equation

, (;t)= /<>,(W)VW    if^ ^ 0,
10 ifx = 0.

Since |i^,(-x)| = ^,(|*|)> tyt *s continuous at 0. Again, 4>t is one-to-one. This time,

t//0 = id^and \px gives a homeomorphism of R" onto {x e /?"| |jc| < 1}. As ? goes

from 0 to 1, one can envision \pt as taking points in R" and radially retracting them

inside the unit disk.

Let 2 e A" denote the point (2,0,0,..., 0).

Finally, define h: Y -* /T^O) by the formula

/i((c1;...,cy, g,,...^),**) = / ^,...,^,2; gi,...,gt,-E g,\-
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The whole point is that / and h are homotopy inverses, and this is what we now

show,

(i) hf = idM-i(0). By tracing through the definitions, one computes that

hf((c1,...,ck;g1,...,gk)) = {ip1c1,...,ypTLck,2;g1,...,gk>-'Egi)

~(^1cx,...,xpxck;gx,...,gk)

since, by assumption, Eg,- = 0.

There is an evident homotopy G,\ jU_1(0) -» m_1(0) between hf and id -i(0), namely,

G!{(cx,...,ck; gx,...,gk)) =(i>tct,...,$tck; gx,...,gk).

(ii) fh - idy. Now,

fh((cx,...,ck;gx,...,gk),a) = ((^1c1,...,^1cfc,2; ft,...,gfc,-£a), tt0).

Given a e &>G and 0 < y < 1, let a  be the element of &G defined by ay(s) =

a(sy). In particular, a0 = k0 and ax = a; also, av,(l) = a(j).

Next, define a homotopy //,: 7 -> 7 by the equations

Ht((c1,...,ck;g1,...,gk),a)

i{(^ltcx,...^2tck; gx,...,gk),a) if 0 < t =s \,

' |((*1c1,...,^1cfc,2;g1,...,gJk,o(2-20-Lft).«2-2»)    if*<«<l.

Observe that Ht is well defined when t = \ by applying the identification

«*iC1,...,^1cJt;g1,...,gJk>,o)~ ((^1c1,...,^1cfc,2;g1,...,gfc,0),a)

= ((^1c1,...,^1cJt,5; gi,...,g*,a(l) -Eg/).«i)-

Furthermore, 7/0 = idy and Hx= fh.

This completes the proof that 7 and ju,_1(0) are homotopy equivalent.   D

We shall apply (1.2) to the special case G = S1. As usual, the group operation of

Sl will be written multiplicatively; the identity element will be denoted by 1.

Recall the fibration S"+1(n + l) -» S"+1 -» ^(Z, « + 1) described at the begin-

ning of this section. Looping this n times yields another fibration

Q"(Sn+1(n + 1» ^ G"S"+1 * fl^Z, « + 1) = tf(Z,l) = S1.

The map m above is of degree one in the sense that it represents a generator of

[fl"5n+1, S1] = ff1(0"S"+1; Z) = Z.

Now, by May's approximation theorem, C„Sl = iPS"^1) = Q"S"+1. In terms of

the May model, the map m: fl"5" + 1 -* S1 corresponds to the map ju„ sk C„5X -* S1

discussed in (1.2). (/x„ si has degree one since it is split by the obvious map x

~<0;x).)
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Thus, there is a map of fibrations

i i

C„Sl      ^ &"S"+1

H I [ m

s1      = s1

where B is May's equivalence and B' is the induced map of homotopy fibres. By the

Five Lemma, B' induces an isomorphism on homotopy groups. Hence, (1.2) allows

us to describe the homotopy type of S2"(5" + 1(« + l)) in terms of C„SX.

Theorem (1.3). fi"(5"' + 1(« + l)) is homotopy equivalent to

M''(l)= i(c1.c,;x1,...,x,>GCH51in^, = l   ■    □

Remarks. (1) Of peculiar interest may be the case n = 1. Then (1.3) describes

tt(S2(2)) = SIS3 as Z = {xx ■ ■ ■ xk e J(Sl) | nf=1x, = 1}, where J(Sl) is the

James reduced product of S\ (The expression xx ■ ■ ■ xk is meant to denote a

"word" of length k, not a multiplication in Sl.) From this point of view, the

inclusion Z c J(SX) corresponds to the looped Hopf map £2r/: &S3 -» &S2.

Of course, the usual model for J2S3 is the James reduced product J(S2).

(2) A version of (1.3) can also be formulated when n = oo. Namely, let m:

fi00^00^1) -* S1 be a map of degree one. Then

(«i.^1.**)evinx( = i

is a model for the homotopy fibre of m.

2. The spectra Bx(k)—elementary properties. We now introduce the spectra Bx(k)

whose study comprises the bulk of this work. These spectra are closely related to a

family of spectra B(k) first constructed by Brown and Gitler in [3], and the last part

of this section is devoted to establishing some simple connections between Bx(k) and

B(k). For instance, thanks to a theorem of R. Cohen, the definition of Bx(k) leads

to an obvious map ik: Bx(k) -> B(k). We shall compute H*Bx{k) as a module over

the mod2 Steenrod algebra and then show that (ik)*: H*B(k) -* H*Bx(k) is a

certain natural projection. (It amounts to killing Sq1.) In addition, we will show that

M2 A Bx(2k) - B(2k + 1), where M2 is the Z2 Moore spectrum. This will allow us

to prove the existence of a cofibration of spectra Bx(k - 1) -* Bx(k) -> B(k). As a

result, Bx{k) can be realized as a cofibre; that is, there is a map /: 2"'fi(A) -»

Bx(k - 1) such that B^k) = Bx(k - 1) U/C(2"15(/:)).
The spectra Bx(k) are defined in §2.2; up until then, we record some necessary

background information.
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2.1. Preliminaries. All homology and cohomology should be taken with coeffi-

cients in Z2, the integers mod 2, unless otherwise noted.

Let A denote the mod 2 Steenrod algebra, and let x: A -> A be the canonical

antiautomorphism. In what follows, we will often be concerned with studying certain

cyclic modules over A, as described by

Definition (2.1). Given k > 0, let

(a)M(k) = A/A{x(Sqi)\i> k};md

(b)Mx(k) = A/A{Sq\x(Sql)\i>k).

Remarks. (1) One can also write Mx(k) as M(k) ®A Z2, where AQ is the exterior

subalgebra of A generated by Sq1 and where the right action of A0 on M{k) is

induced by right multiplication.

(2) Since x(Sq2/c + 1) = xCSq'Sq2*) = x(Sq2*)Sq\ one easily sees that Mx(2k) =

Mx(2k + 1). Indeed, many of the definitions that we propose will contain this type

of redundancy. However, we will continue to allow for both odd and even cases, as it

will help make certain results (e.g., (2.15), (4.9)) easier to state.

The additive structures of M(k) and Mx(k) are not hard to determine:

Theorem (2.2). (a) M{k) has an additive basis given by (x(Sq')l Sq' is admissible,

I = (ix,...,/,), andix < k).

(b) Mx(k) has an additive basis given by {x(Sq')| Sq7 is admissible, I = (/,,...,(',),

ix ^ k, and ix = 0 (mod 2)}.

Proof, (a) is a straightforward consequence of the Adem relations.

To prove (b), note first that if ix = 1 (mod 2), then

x(Sq') = xtSq1 Sq'^Sq" • • • Sq'') = X(Sq"-1Sq^ • • • Sq'') Sq1 = 0

in Mx(k). To see that the elements described in (b) are linearly independent, observe

that x(Sq2' + 1)Sq' = xCSq1 Sq2, + 1) = 0, so that, in order to have x(Sq7) in /({Sq1},

ix must be odd. This, along with the Adem relations, implies (b).   □

A good reason for studying the module M(k) is supplied by the work of Brown

and Gitler. They constructed a spectrum B(k), now known as the "Brown-Gitler

spectrum," one of whose properties is

Theorem (2.3) [3]. H*(B(k)) = M(k) as A-modules.    □

M(k) also made a rather unexpected appearance in certain constructions of

Mahowald, which we now review.

Let h: S1 -> BO represent the generator of ttxBO = Z2. h admits a canonical

extension fi222/i: G2^1 = ft2S3 -* £222250, and, since BO is an infinite loop

space, there is a retraction r: 52222fiO -* BO. Let y: fi253 -» BO be the composite

S2253   -»   tf^BO^BO.

Mahowald [14, Corollary 4.5] made the striking observation that T(y) = K(Z2),

where T(y) is the Thorn spectrum associated to y, and K(Z2) is the Z2 Eilenberg-

Mac Lane spectrum, both normalized to have bottom homology class in dimension

zero.
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Let QS1 be May's configuration space model for Q2S3, as described in §1. QS1

has an obvious filtration, namely, in the notation of §1,

FJ(C2S')=UF(R2,k)x^(Si)k/~.
k = \

By May's approximation theorem, C25x = Q2S3, and hence we can also regard &2S3

as a filtered space. Abbreviate the y'th stage of this filtration to Fj, so that

Q2S3 =Uf/,* = f„cF,cF2c...
Y

Let Ya = y|/t, i.e., yk is the composite Fk c £l2S3 -> BO. The possibility of

realizing the Brown-Gitler spectrum B(k) as the Thorn spectrum T(yk) was sug-

gested by a calculation of Mahowald and then concluded by a proof of R. Cohen.

Theorem (2.4) (Mahowald [14]). H*(T(yk)) = M(k) as A-modules.   □

Theorem (2.5) (R. Cohen [9]). T(yk) is homotopy 2-equivalent to B(k).   D

(We should point out that, due to the manner in which it is constructed, B(k) is

trivial at odd primes.)

Remarks. (1) For our purposes, two spectra will be called homotopy 2-equivalent

if their 2-completions are homotopy equivalent. A suitable reference on completions

is Bousfield and Kan [2, especially Chapters I, VI]. The 2-completion we shall use is

what Bousfield and Kan refer to as the "Z2-completion."

(2) In [14], Mahowald also studied the filtered quotients Fk/Fk_x of the May

decomposition of fi253. It is easy to see that Fk/Fk_x is the Thorn space of the

A:-plane bundle

F(R2,k)x^(R1)k -* F(R2,k)x2k(pt.).

Mahowald showed that H*(Fk/Fk_x) = 2kM([k/2]). Brown and Peterson [6] then

followed up on this by proving that Fk/Fk_x gives another realization of the

Brown-Gitler spectrum, i.e., Fk/Fk_x is homotopy 2-equivalent to HkB([k/2\).

Let x, e Hx(ti2S3) be the generator and set xi = (Ql)'~1(xl) in the usual

lower-index Dyer-Lashof notation. Given a monomial m = x"1 ■ ■ • x"\ define the

weight of m, wt(w), to be E*?_1a/-2-'-1. The following theorem contains well-known

results of May and F. Cohen.

Theorem (2.6) [7, I, III], (a) H,(Q2S3) = Z2[xx, x2,...\, where x, e H2i_x(ti2S3).

(b) H+(Fk) has a Z2-basis consisting of all monomials m such that wt(w) < k.   □

Now recall the fibration fi2S3(3> -^ fi2S3 ™ Sl of §1, where S3(3) is the

3-connective cover of S3. If a: S1 -» £l2S3 represents a generator of irx(£l2S3) = Z,

then it is easy to check that (a + p): S1 X G2S3{3) -» tt2S3 induces an isomor-

phism on homotopy groups and hence is a homotopy equivalence. (" + " above

denotes the loop sum in Q2S3.) Thus, H*(tt2S3) = H*Sl ® i/*(S2253(3>). More-

over, the map/?: Q2S3(3) -> U2S3 is a double loop map so that

;u:ff.(02S3<3»-ff,(02S3)
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is a ring homomorphism which commutes with Qx. In light of (2.6), this establishes

Theorem (2.7). H*(tt2S3(3)) = Z2[x\, x2, x3,...] c H*(tt2S3).   n

Note that the set of all monomials of even weight forms an additive basis for

//+(ft2S3<3>).

One outgrowth of (2.6) is that H*(ti2S3) and the Steenrod algebra A are

isomorphic as graded vector spaces; the link between them is provided by Milnor's

analysis of the dual of the Steenrod algebra [17]. Milnor's isomorphism will come in

handy later, and so now we briefly recall how it is defined.

Let J( be the set of all sequences of nonnegative integers having finitely many

nonzero entries: J = (ax,... ,a„,0,0,...). Let yTbe the set of all sequences / such

that Sq' is admissible in A. Define 6: Jf -> Jf by 8(ax,_a„,0,0_) = (/',./„),

where /'   = Y!,j=q2J~qaj; for instance, ;', = a, + 2a2 + 4a3 + • • • + 2"   la„.

Lemma (2.8). 6: Jf -> Jfis a bijection of sets.

Proof. 6 has an inverse <j>: Jf^> ^defined by

*('i.'„) = ('i -2/2./„., -2/„,/„,0,0,...).    D

Next, given a monomial m = x"> • ■ ■ x"-, define 0*(m) = x(Sqs<"'.«,.-0-o--))_

Extending this by Z2-linearity, one obtains a vector space homomorphism 6*:

H*(Q2S3)-* A.

Lemma (2.9). (a) 6* is an isomorphism of graded vector spaces.

(b) If d*(m) = x(Sq') as above and I = (ix_,/„), then ix = wt(w).

Proof. Checking that 6* preserves graded dimension is a triviality. Also, (2.8)

implies that 6 induces a one-to-one correspondence between basis elements, and this

proves (a), (b) follows directly from the definition of 6.   □

We now return to the study of Thorn spectra.

Let g: fi253(3> -> BO denote the composition B25'3(3) ^ £2253 ̂  BO. Maho-

wald [15] recognized that the Thorn spectrum 77g) was another familiar object:

Theorem (2.10). T(g) is homotopy 2-equivalent to the Eilenberg-Mac Lane spec-

trum K(Z).

Proof. Since H\Q,2S3{2>)) = 0, the map g lifts to g: fi~S3(3) -* BSO, i.e., T(g)

has an integral Thom class. Let U: T(g) -* K(Z) represent this class. We shall

prove that U is a 2-equivalence by showing that it induces an isomorphism in mod 2

cohomology.

The map p: fi2S3(3) -> tt2S3 induces a map on the level of Thom spectra T(p):

T(g) -> T(y) ~ K{Z2) which is nontrivial; thus, T(p) represents the mod2 Thom

class. This gives a commutative diagram

K(Z)

v /    li-

ng)     -     K(Z2)
Tip)
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where r represents reduction mod 2. Hence, there is a diagram in cohomology:

H*(K(Z)) = A/A {Sq1}

U* / T r*

H*(T(g))       - H*(K(Z2)) = A
t(pY

Now, /?*: H*(Q2S3(3)) -» /f*(S22S3) is injective, so, after applying the Thom

isomorphism, 7X/>)* must be surjective in cohomology. This in turn implies that £/*:

A/A{Sq1} -* H*(T(g)) is surjective. Thus, to prove that U* is an isomorphism, it

suffices to show that A/AlSq1} and H*(T(g)) have the same rank over Z2 in each

graded dimension

By the Thom isomorphism, H*(T(g)) = #*(S22S3(3)) as graded vector spaces.

Recall that H*(ti2S3(3)) has a basis consisting of monomials of even weight. On the

other hand, by (2.2)(b) when k = oo,A/A{Sq1} has a basis consisting of x(Sq<'1,-''"))

with /', even. A one-to-one dimension-preserving correspondence bdtween these basis

elements is provided by (2.9), and this completes the proof.   □

The idea of using (2.8) in conjunction with the Thom isomorphism for proofs of

this type seems to be due to F. Cohen, May and Taylor [8, p. 105].

2.2. The spectra Bx(k). We now commence the study of the spectra Bx(k). The

definition to be given was originally presented by Mahowald [15, p. 554]. (See the

appendix for an alternative, non-Thom spectrum definition.)

In view of the homotopy equivalence Q,2S3 = S1 X tt2S3(3), Mahowald allows

the May filtration on tt2S3 to induce a filtration on fl253(3). Let W2n c Sl2S3(3)

denote the stage of this induced filtration such that W2n c F2n and H*W2n = H*F2n

n H*(fl253(3)). Also, define W2n+l to be equal to W2n. In this case, by (2.6)(b) and

(2.7), the preceding homological equation is still true, i.e., HifW2n+x = HitF2n+x n

H+(ti2S3 (3)). Either way, HitWk has an additive basis comprised of those mono-

mials m in the x, which satisfy wt(w) < k and wt(>n) = 0 (mod 2).

Note that, for any k, there are "canonical" inclusions Wk c Fk, namely, either

W2n c F2n or W2n+l = W2n c F2n c F2n+l.

Finally, let gk: Wk -» BO denote the composite

WkcFk^ BO.

Definition (2.11). The spectrum Bx{k) is defined to be the Thom spectrum

T( gk), completed at 2.

Remarks. (1) Bx(2k) = Bx(2k + 1). (The definition was not meant to disguise

this.)

(2) The spectra B^k) played an essential role in Mahowald's presentation of

fto-resolutions in [13], as well as in a subsequent elaboration of that exoosition by

Davis, Gitler and Mahowald [10].

Induced over the inclusion Wk c Fk is a map of Thom spectra T(gk) -> T{yk).

Completing this at 2 and then using R. Cohen's Theorem (2.5), one obtains a map

ik. Bx(k) - B(k),
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In view of the relationship between B(k) and K(Z2) as Thom spectra, one can

look at the realization of K(Z) in (2.10) and then begin to regard Bx(k) as being

what an integral version of the Brown-Gitler spectrum should look like, at least as

far as 2-primary information is concerned. Such an interpretation is enhanced by

Theorem (2.12). H*(Bx(k)) = Mx(k) as A-modules. Furthermore, (ik)*:

H*(B(k)) -> H*(Bx(k)) is the obvious projection it: M(k) -» Mx(k).

Proof. The arguments here are similar in spirit to those given in the proof of

(2.10).
The inclusion Wk c Fk induces a homomorphism HifWk -* H*Fk which is injec-

tive. Thus, by dualizing and translating to the Thom spectrum level via the Thom

isomorphism, we conclude that (ik)*: H*B(k) -* H*Bx(k) is surjective. Moreover,

HlBx(k) = HxWk    (by the Thom isomorphism)

= (H1Wk)* = 0,

so that (ik)* Sq1 = 0. This implies that (ik)* factors

H*B(k) = M(k)->H*Bx{k),

where w must also be surjective.

As shown in (2.2)(b), Mx(k) has a Z2-basis given by those x(Sq') with h < k and

ix = 0 (mod2). On the other hand, H*Bx(k) = H*Wk as vector spaces by the Thom

isomorphism, and we know that H*Wk has a basis given by monomials m with

wt(m) < k and wt(m) = 0 (mod 2). Thus, (2.9) shows that Mx(k) and H*Bx(k) have

the same rank over Z2 in each graded dimension, and this implies that w must be an

isomorphism.

The assertion in the theorem concerning (ik)* is forced by the fact that (ik)* is

A -linear.   □

The next lemma is easily verified.

Lemma (2.13). The following sequence of A-modules is exact:

0 -> Mx(k - 1) -> M(k) ^ Mx(k) -» 0,

where B(\) = Sq1 and ir(l) = 1.

Proof. Use the description of the bases for these modules given in (2.2).   □

We shall show that this exact sequence can be realized by a cofibration. To do

this, let M2 denote the stable Z2 Moore complex S°u2e1.

Lemma (2.14). M2 A Bx(2k) = B(2k + 1).

Proof. This fact seems first to have been noticed by Mahowald [15].

Consider the composition c: S1 x W2k c Fx x F2k -» F2k + 1, the last map coming

from the multiplicative properties of the May filtration of fl2S3 [16]. It is easy to

check that c induces an isomorphism in homology.
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Next, there is a commutative diagram

S1 X W2k     -       F2k+1

h + g2k \ 1/ y2k + \

BO

where h: S1 -» BO represents the nontrivial element of ttxBO. The Thom spectrum

T(h) is the Moore spectrum M2. Thus, c induces a map T(c): M2 A Bx(2k) -»

7i(2£ + 1) which is an isomorphism in homology and, consequently, must be an

equivalence.   □

Theorem (2.15). There is a cofibration

Bx(k- 1) -+B1(k)^B(k)

whose long exact sequence in cohomology realizes (2.13).

Proof. Case 1. k = 2n + 1. Let S° -» S° -» A/2 be the usual cofibration. Since

cofibrations are preserved by smash products, one obtains a cofibration

S° A 51(2n)2^ldS° A 51(2«)i^ M2 A Bx(2n),

which can be rewritten

Bx(2n) -i 5x(2/i + l)7^ 5(2n + 1)

using (2.14). (Recall that Bx(2n) = Bx(2n + 1).) Tracing through the arguments

given in (2.14), it is easy to check thaty' A id is the same as the standard map i2n+x,

as desired.

Case 2. k = 2n. Let X denote the cofibre of i2„: Bx(2n) -» B(2n). Since (i2n)* is
hn

surjective, the long exact sequence in cohomology of Bx(2n) -» B(2n) -* X breaks

up into a series of short exact sequences

0 -h> //** -> H"B(2n) '2j!*  H"Bx(2n) -* 0.

Thus, by (2.13), 77** = SM^h - 1).

Over the obvious maps of base spaces

W2n-X     c     F2„_!

n n

Win C ^2„

there are maps of Thom spectra:

Bx(2n-\)     'V     B{2n-\)     -*     2fl,(2n - 2)

1 H if

5i(2/i)          ^          B(2n)         -> X
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Here, f is the induced map of cofibres, the cofibre of /2„_1 having been identified as

2731(2« - 2) in Case 1. We will prove that f is an equivalence by showing that it

induces an isomorphism in cohomology.

Since H*X = 2M1(2« - 1) = ZMx{2n - 2) = 77*2B1(2« - 2) and since these

modules are cyclic over A, it suffices by ,4-linearity to check that f*: HlX -*

7/12751(2« - 2) is an isomorphism, i.e., that f*(l) = 1. But, by using the Thom

isomorphism, it is easy to see that £*: H1B(2n) -» HlB(2n - 1) satisfies ^(Sq1) =

Sq1. The desired result follows from the exact sequences (2.13).

The upshot of all this is that X - 1Bx(2n - 2) = 27?x(2n - 1), so that there is a

cofibration

Bx(2n) '* B(2n) -> 273,(2/7 - 1).

This completes the proof.   □

Remarks. (1) The proof of Case 1 shows that, when k is odd, the cofibration of

(2.15) should really be written

Bx(2n + 1) -^ Bx(2n + 1) -» B(2n + 1).

(2) One implication of (2.15) is that the Brown-Gitler spectrum B(k) can be

realized as a cofibre. Namely, there is a map g: Bx(k — 1) -» Bx(k) of degree 2 on

the bottom cell such that B(k) = Bx(k) U gC(Bx(k - 1)).

Brown and Peterson [6] obtained B(k) as a cofibre in a different way. Specifically,
h

they proved that there exist cofibrations of the form 2 B([k/2\) -* B(k - 1) ->

B(k) and hence

B{k)<*B(k-l)UhC(2k-lB([k/2])).

3. Some families of subcomplexes of the A-algebra. In this section, we shall

construct explicit free resolutions of the ^-modules Mx(k). These will be used later

in the Adams spectral sequence and Postnikov analyses of Bx{k). In addition, we

will describe a family of closely related resolutions of A/A {Sq1} which are needed in

some of the naturality arguments in §5.

3.1. A resolution of Mx(k). Each of the resolutions to be discussed in this section

will be a subcomplex of a certain fixed A -resolution of Z2, the so-called "A-algebra"

resolution. To recall, let A be the free associative Z2-algebra with unit generated by

\t,i = -1,0,1,..., modulo the relations

(3.1) ^\ = E(2s-(;--2o)X,+A-s   whenever2i<7-

Then let A = A/A{ \_x}; A is the algebra introduced by Bousfield et al. in [1].

Grade A by setting dim A., = i.

If I = (ix, i2,...,iq), let \f = \, A,2 • • • X,v Also, define /(/) = q and t(I) = iq.

The sequence 7 is called admissible if t(I) > 0 and 2/'y > ij+l fory' = l,2,...,q - 1.

(By convention, if 7 = ( ), then A7 = l, /(7) = 0, /(7)= oo, and I is considered

admissible.) In [1], it is shown that

Lemma (3.2). {X7|7 admissible) is an additive basis for A.   □
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Next, let A* = Hom^(A, Z2) be the graded vector space dual and let {A7}

denote the dual basis with respect to the basis of (3.2). On the free A -module

A ® A*, there is an /1-linear differential d: A ® A* -» A ® A* which acts on basis

elements according to the formula

(3.3) rf(l®A') = EA'(A/Ay)x(Sq^I)®A^.

The summation on the right runs over all j > -1 and all basis elements A7. From

now on, given a ^ A and A e A*, the symbol a ® A will be abbreviated to aX.

Lemma (3.4). IfX'iX^j) * 0, then t(J) > t(I) and l(J) = 1(1) - 1.

Proof. This follows by induction on 1(1), using the relations (3.1).   □

For the remainder of this section, let k > 0 be a fixed integer.

We now recall the Brown-Gitler resolution of M(k) = A/A{x(Sq')\i > k}. Let

Dq{= Dq(k)) = A ® {A'17 admissible,/(7) = q,t(I) >k),

viewed as an /1-submodule of A ® A*. In particular, D0 = A ® {A()} = A. From

(3.4), it follows immediately that d(Dq) c Dq  x. Brown and Gitler proved

Theorem (3.5) [3]. The sequence

■■ -Dq^Dq_1-* ■■■ -*Do-^M(k)^0

is exact, where e(A°) = 1.   D

Note that M(0) = Z2 so that, when k = 0, (3.5) gives an ,4-free resolution of Z2.

The resolution we will construct for Mx(k) lies between this full A-algebra resolution

of Z2 and the Brown-Gitler resolution of M(k).

Given    sequences   7 = (ix,. . . ,i )   and   J = (jx,. . . Jr),   let   (I, J) =

(il,...,iq,jl,...,jr)md\'\J = \<f-J\

Definition (3.6). The sequence 7 is called /c-acceptable if 1 = (V,Z) where

/(/') > 0, t(F) > k - 1 if /c is even, t(l') > k if k is odd, Z = (0.....0), and

l(Z)> 1.

Now define certain free A -modules C = C^(/c) as follows:

C, = A ® {A'| 7 admissible, /(7) = 9, and

either/(7) > A: or 7 is Ar-acceptable}.

We view Cq as a submodule of A ® A*. In terms of the Brown-Gitler resolution

above,

Cq(k) = Dq(k)®(A ® {A'17 admissible,/(7) = q, I ^-acceptable});

in particular, Dq(k) c Cq(k). Also, C0 = D0 = A ® {A°} = A.

The main point of this section is that the C^'s, together with the differential d

above, form a resolution of Mx(k). This will be proven in Theorem (3.10); first,

however, some calculations are required.

Lemma (3.8). Suppose that I = (ix,... ,iq). Then

dX'-0)= (</A')A° + i,\<'«.'*-« •'«+1).
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Proof. Write

dX^=    E   A<''0>(A7Ay)x(Sq,+1)A'+    £   X<'«(XyX,)x(Sq>+1)X'.
l(J)>0 HJ) = 0

Suppose that t(J) > 0. By the relations (3.1), if 2/ < m, then A,Am = EA,, where

each Ia is admissible and t(Ia) > 2/ + 1. Thus, in order to get A</0)(A;A/) =£ 0, j

must equal -1. Let J = (jx,... ,jq),jq > 0. Once again using (3.1),

x_1x/ = x7.x_1xy2---x^ + (ExJx72.--xv

where t(Ja) > 0. The second term can be expanded in terms of admissible monomi-

als Ar with t(Ty) ^ 1. Consequently,

x^\x_xxJ) = x^(x,x_xxj2...xJJ.

Repeating this argument, it follows that

A<'.»)(A„1Ay) = A<'-°»(A,A72...A,?_A„1Aj.

Now, A_;A^ = (jq - l)X^_xX0 + LXUa, where t(Ua) > 1. Thus,

x^(x_xxJ) = (jq-i)x^(xjr--xJiixJ^xx0).

This will be nonzero if and only if / = (ix,...,iq_x, i   + 1) and iq = 1 (mod2).

Hence,

E   A,/'0)(A7Ay)x(Sq^ + 1)A-/ = iqX^h.»,-i.."f+D.

r(7)>0

Next, assume that t(J) = 0, that is, J = (/',0). Observe that if XjXr = EA/o,

where each./Q is admissible, then AyX(rm = EX(y 0), where each (/a,0) is admissible.

Thus, A(/-0)(XyX(/.0)) # 0 if and only if A'(AyAy,)^ 0. As a result,

E   A<'0>(A;A,)x(Sq^1)A^ = EA/(A/AyOx(Sq'+1)A(y'0)= (d\')X°.
t(J) = 0

Combining the preceding two paragraphs, we obtain (3.8).   D

Lemma (3.9). d(Cq) c Cq_x.

Proof. It suffices to show that dX' e Cq_x for each basis element A' in Cq. For

those A' with t(I)^ k, this follows from (3.4). For those A' with 7 Ac-acceptable, it

follows by iterating (3.8) and then applying (3.4).   D

We are now prepared to prove that the C^'s give a free resolution of Mx(k).

Theorem (3.10). The sequence

■■■ -*Cq^Cq_x^ ■■■ -* C0 - Mx(k) - 0

is exact, where e(A°) = 1.

Proof. The following arguments are modelled quite closely on Brown and Gitler's

proof of (3.5).

Exactness at C0: dX1 = X(Sq'+1)A°, and {A'|< > Ar or i = 0} is a basis for Cx.

Exactness at C , q > 0: This resolution is a subcomplex of the full A-algebra

resolution, so d2 = 0.
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Suppose that u e C and that u e ker J. We need to show that u = dv for some

v e C,+1.

Order all sequences of length <? lexicographically from the right, that is, if

7 = (/,,...,/ ) and J = (jv... ,jq), then 7 > / if there exists t ^ 1 such that i, > j,

and is = js for s > t. Observe that (0,... ,0), the sequence of q zeros, is the minimum

element.

Given any inadmissible sequence K, one can use (3.1) and induction on l(K) to

show that XK = Y,XK>, where each Ka is admissible and Ka < K. It then follows

from the definition of d, (3.3), that, if 7 = (/,/) is admissible, then

(3.11) </A' = x(Sq' + 1)A'+  Zbj.\r.

Next, express u = EaaA'°, aa # 0, where each Ia is admissible, and let 70 = min 7tt

with respect to the above ordering.

Case 1. /„> (0,...,0). (Thus, I0 > (k - 1,0,...,0) if k is even and 70 >

(A:,0,...,0) if k is odd.) Write 70 = (/, /). Then u = E/>,ayA0"/') + LcrX'\ where

7' = (/', /') and /' > /. Hence, by (3.11),

0 = du = E ajX(Sq' + 1)XJ +  E brXJ .
j>i J'>J

In particular, E_/>/a7-X(Sq-/+1) = 0. Suppose that a, = Ex(Sq''). where each L, is

admissible in the usual Steenrod algebra sense. Then

0 = Ex(Sq/-)x(Sq' + 1)+E«/x(Sq' + 1)
t j>i

= Ex(Sq(' + 1''-<>) + Ex(Sq7 + Vj;),

where a;' = x(«;)- According to the Adem relations, if SqBis admissible, then Sq(uB)

is either admissible or can be written as a sum of Sqs' 's where the first entry of 7? is

greater than a. Consequently, after expressing each a's in terms of admissible

monomials, one sees that, in the preceding sum, the (/ + 1, L,) cannot all be

admissible. Say that (/ + 1, L0) is not, so that L0 = (j + I, K), where i ^ 2j. Note

that

JA(''''y) = c/A('-/«) = x(Sq/ + 1)A/»+   E  ^Xr.
T>10

so adding d(x(SqK)X{j'o)) to u replaces x(Sq'")A'" by terms involving XT, T > I0.

Moreover, X°'/o) e Cq+X. (Note the use of 70 > (0,...,0) here.) Continuing in this

way, we may express u = dv + terms in Ar with T arbitrarily large. But dim XT

increases with T. Hence, u = dv, as desired.

Case 2. 70 = (0,...,0). We will find w e Cq such that w = u + dv for some

v g Cq+l and such that w satisfies the conditions for Case 1.

Let u = a0A'° + T.T>I aTXr.

Since x(Sq2, + 1) = xW Sq2') = x(Sq2,')Sq1, we may write a„ = b Sq1 +

Ex(Sq<m'"/,)), where each (m,, J,) is admissible and m, = 0 (mod2). Now, by (3.8),
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dX°.°>= Sq1^0.0). LetM, = u + d(bX(0.°>).Then

«1=Ex(Sq(m'-/',)X/°+   E aTXT.
r>r0

Also,

0 = dux =Ex(Sq(m'-7',)Sq1A(0.°> +   E aTdXT
T>10

= Ex(Sq(m'+1"/'))X(0.0)+   E aTdXT.
T> l„

Each of the sequences (m, + 1, J,) is admissible, and hence each x(Sq""'* iy'))A<0.0)

must be cancelled by a term coming from some aTdXT. Choose a particular

(m, + 1, /,) and suppose that x(Sq</"'+1"/'))A(0.0) is cancelled by a term coming

from aTdXT. According to (3.11), in order to contribute to such a cancellation, T

must be of the form (y, 0.0):

d(aTWfi.0)) = tfrx(Sq; + 1)A(0.°> +       E      cKXK
K>(0.0)

= x(Sq^ + 1^)A<0.°> +       E       cKX",
K>(0_0)

where a'T = x(ar)- Using the Adem relations, one can see thaty + 1 < m, + 1, that

is,y < mt. But, by definition of Cq,

■     I k — 1     if Ar is even,
3 " \Ar if A; is odd.

Since m, is even, this implies that

| Ar if Ar is even,

'" U + l     if A; is odd.

Therefore, V''"1'0.0) e Cq+X.

Now,

rf(Ex(Sq/')X(-"-lfl.°')= Ex(Sq^)x(Sq'"')X(0.0) +       E       e^X*
K>(0.0)

= Ex(Sq(m'y',)X/»+   E eKXK.
K>I„

Let

H'="i+^(Ex(Sq7')^'"'_1-°.0>)

= u + d(bX(0.°> + Ex(SqJ')X(m'_1°.0)).

Then w = Er>(0    o)XTXT, which reduces the problem to Case 1, thereby completing

the proof.   D

3.2. Some resolutions of A/A{Sq1}. As mentioned earlier, the modules Cq of (3.7)

can be decomposed into two pieces, one piece being the modules Dq that Brown and

Gitler use for M(Ar) and the other piece involving the "Ar-acceptable" basis elements.

Inasmuch as one passes from M(Ar) to M,(Ar) by killing Sq1, the Ar-acceptable piece
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can be regarded as accounting for the relation Sq1 = 0 and other higher order

relations associated to it. In §5, we shall need to use this idea. More precisely, we

shall require /I-free resolutions of A/AlSq1} which include the Ar-acceptable basis

elements; the remainder of this section is devoted to constructing such resolutions.

Define certain free /4-modules Eq = £ (Ar) as follows:

Eq = Eq(k) = A ®{A'| 7 admissible,/(7) = q, and either (i) t(I) > Ar

and t(l) = 0 (mod2) or (ii) 7is Ar-acceptable}.

As usual, we regard E as a submodule of A ® A*. Note that Eq c Cq and that

Cq = Dq + Eq (though not a direct sum). Also, E0 = C0 = A ® {X{ >} = A. In

Theorem (3.15), we will prove that the E 's with the differential d form a resolution

of A/A {Sq1}, but first there are some preliminaries.

Lemma (3.13). Suppose that I and J are admissible sequences such that t(I) = 0

(mod 2) and t(J) = 1 (mod2). Then A'(A,Ay) = 0.

Proof. It follows from (3.1) and standard arguments involving mod 2 binomial

coefficients (e.g., [18, Lemma 2.6]) that, if/' is inadmissible and t(J') = 1 (mod 2),

then Xj, = LXj, where Ja is admissible and t(Ja) = 1 (mod 2). The lemma is an

immediate consequence.   □

Remark. Let A*venbe the subspace of A* with basis {A'|7 admissible, t(I) = 0

(mod2)}. The content of the lemma is that d(A ® A*vcn) c A ® A*ven.

Lemma (3.14). d(Eq) c Eq_x.

Proof. It suffices to show that dX' e Eq_x for each basis element A' in Eq. For

those A' with t(I) > k and t(I) = 0 (mod2), this follows from (3.4) and (3.13). For

those A' with 7 Ar-acceptable, it follows by iterating (3.8) and then applying (3.4).   □

Theorem (3.15). For each Ar, the sequence

• • •  - Eq^ £,_, - • • ■  - E0 A A/A {Sq1} - 0

is exact, where e(A°) = 1.

Proof. Exactness at E0: Note that

Ex = A ®{A'j/ = 0or;' = 2y > k}.

For A' of this type, dX1 = x(Sq' + 1)A( > = X(Sq: Sq')A( > = x(Sq')Sq1 A(», and hence

d(Ex) = (A{Sql})X".

Exactness of Eq, q > 0: The arguments are identical to those used in the proof of

(3.10).   □
Remarks. (1) A series of closely related resolutions of A/A{Sq1} can be con-

structed by tacking a fixed number of zeros onto the ends of all the basis elements of

the Eqs. That is, let Z(t) = (0,... ,0) be the sequence consisting of / zeros, and let

EqX7A,) = A ® {A(/'Z(,))|A7 e Eq). Then the arguments that went into the proof of



402 D  H  SHIMAMOTO

(3.15) can easily be extended to show that the following subcomplex of the A-algebra

resolution is also exact:

•••  -»£,XZ(,)-»£,_1XZ(,)-» ••■  ^E()XZU)^A ®{AZ('-1>} ->

• • •  -> A ® {A0 } - A ® {X()} -» ^/y4 {Sq1} -* 0.

(2) Observe that (3.13) implies that the differential d induces a map d'\ A ®

(A*/A*ven) -> A ® (A*/A*vcn). (See the remark following (3.13).) We have learned

that Paul Goerss has used this idea to obtain resolutions of the modules Mx(k) in

the following manner [11].

One can think of {A7|7 admissible, t(I)= 1 (mod2)} as an additive basis for

A*/AJveir Define

C;(= C'q(k)) = A ® {A'| 7 admissible,/(7) = q,t(I) > k,

and?(7) = 1 (mod2)},

regarded as a submodule of A ® (A*/A*ven). Then Goerss shows that the sequence

•••  -» q ^ C;_, - •■■  -C1'-/l//l{Sq1}-M1(Ar)^0

is exact.

4. On the homotopy groups of Bx(k). In this section, we use the Adams spectral

sequence to compute the homotopy groups of Bx(k) up through a dimension roughly

equal to 2Ar. By calculating in the A-algebra via the resolution of H*Bx(k) = A/,(Ac)

constructed in §3, we obtain the E2 term. Then, to pass to Ex and solve the

subsequent extensions, we translate the problem to the Brown-Gitler spectrum 7?(Ar),

where the corresponding problems have already been solved.

More precisely, the following results are obtained:

(a) tTQ(Bx(k)) = Z2 (Z2 = limZ2, , the 2-adic integers).

(b) All elements of trq(Bx(2k)) = <nq(Bx(2k + 1)), 1 < q < 4Ar + 2, are of order 2.

A Z2-basis for these groups is given by

{A,| 7 admissible, dim A, < 4Ar + 2, t(I) > 2Ar + 1, and t(l) = 1 (mod2)}.

(c) (/A)+: tTq(Bx(k)) -> trq(B(k)) is injective for 1 ^ q < 2Ar.

To begin, given a spectrum X, {(Er(X),dr)} will denote the Adams spectral

sequence of X. The bigrading of Er(X) is the usual one so that a nonzero element

x e ES/(X) which survives to E^'(X) contributes to an extension in ir^^X). t - s

is called the total dimension of x.

As explained in §3, the free ,4-module A ® A* has a differential d which gives rise

to an A -free resolution of H*S° = Z2, where 5° is the sphere spectrum. (This is

Theorem (3.5) for Ar = 0.) Thus, (EX(S°), dx) = (HomA(A ® A*, Z2), d*). Now, the

primary appeal of using the A-algebra is that this Ex term is tractable [1]; namely,

for this resolution, (EX(S°), dx) = (A, 3), where 3: A -> A gives A the structure of a

graded differential algebra and satisfies

(4.1) ^ = £(2/-V-2K-lX'-
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The action of 3 is identical to multiplication on the left by X_x. We remark that, as

an element of EX(S°), X, has total dimension equal to the dimension of A, in A.

We next summarize some of the Adams spectral sequence properties of the

Brown-Gitler spectrum B(k). Let 3 = 3>(k) denote the resolution of H*B(k) =

M(k) described in Theorem (3.5):

3:  ■■■  -> Dq ̂  Dq_x - • • •  - D0 ̂  M(k) -> 0.

Recall that Dq = A ® {A7|7 admissible, 1(1) = q, t(I) > Ar}. For this resolution,

Ex(B(k)) = Hom^, Z2). Since 3 is a subcomplex of A ® A*, Ex(B(k)) can be

thought of as a quotient of A; specifically, Ex(B(k)) = A/A{X0,...,Xk_1}. From

this point of view, Ex(B(k)) has a Z2-basis consisting of those X, with 7 admissible

and t(I) > Ac, and dx: Ex(B(k)) -* Ex(B(k)) can be computed by using 3, followed

by passing to the quotient.

The following theorem is a reasonably straightforward consequence of Brown and

Gitler's construction of B(k) in [3]; details have since been written up by Brown and

Peterson.

Theorem (4.2) [4, Theorem 5.1]. (a) EsJ(B(k)) = E['(B(k)) provided that t - s

< 2Ac (i.e., the spectral sequence collapses in this range).

(b) All elements of trq(B(k)), q < 2k, are of order 2 (i.e., there are no nontrivial

extensions in this range).   □

Remark. Observe that, by using (4.2)(a), one can compute the order of ir2k(B(k)),

at least in principle; however, the extensions have not been completely determined.

It is known that elements of order greater than 2 do exist. For instance, Brown and

Peterson [4] have used a map/ e tTv+i(B(2j)) of order 2j+2 which is represented by

A2;+i in order to shorten Mahowald's construction of a nontrivial element tj+2 e

7T2, + 2(S0)[14].

We now begin to analyze the Adams spectral sequence of the spectrum Bx(k). Let

<€ = %(k) denote the resolution of H*Bx(k) = Mx(k) given in Theorem (3.10):

<€: ■■■ - C, -i c,_x -» • ■ •  - C0 ̂  Mx(k) - 0.

Recall that C = A ® {A7|7 admissible, 1(1) = q, and either t(I) ^ Ac or 7 is Ac-

acceptable). Like 3, the resolution ^ is a subcomplex of A ® A*. As a result,

Ex(Bx(k)) = Hom^C^, Z2) can be regarded as a quotient of A and dx: Ex(Bx(k))

-* Ex(Bx(k)) is the Z2-quotient map induced by 3. In this setting,

{A/| 7 admissible and either t(I) > Ac or 7 is Ac-acceptable}

is a Z2-basis for Ex(Bx(k)).

The following lemma was proven by Brown and Gitler in [3] and in fact is implicit

in the statement of (4.2)(a).

Lemma (4.3). Suppose that dim A; < 2Ac + 1. Then dX, e A{X0,.. .,Xk_x).

Proof. As defined in §3, A is the free associative Z2-algebra generated by A,,

i = -1,0,1,..., modulo the relations (3.1), and A = A/A{A_!}. Let /„ c A be the

left ideal A{A^,A0,...,A„_i}.
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We will show by induction on 1(1) that

(4.4) /„*/<= 4.

where s = [(2n + dim X,.)/2]. Since, in A, 3A, = X_XX,, the lemma will follow from

(4.4) by setting n = 0.

Suppose /(7) = 1, i.e., 7 = (/'). Lety < n be given. If 2y > /, then A A, e /;+1 c

/[(2rt+,)/2)- On tne otner hand, if 2j < i, then XyX, e J[a„+n/2] by (3.1). Next,

suppose that 7 = (/, 7'), /(/') > 0, and that (4.4) is true for 7'. Then

JnKl = (JnKi)KV C •/l(2;, + ,)/2]^/' C ^j-

This proves (4.4) and, as mentioned, implies the lemma.   D

Lemma (4.5). Suppose that I = (ix,...,/ ) is admissible, i > 0. 77?e« 3X, =

(i'4 - 1)A(1-      ,-     ,• -i,o) + £X,, where Ia is admissible and t(Ia) > 1.

Proof. This calculation was carried out as part of the proof of (3.8).   □

A rather technical computation now yields E2(Bx(k)) in total dimension less than

or equal to 2Ar, as follows.

Lemma (4.6). For t — s < 2Ar, E2'(Bx(k)) has a Z2-basis consisting o/X(() 0) = X{,

j > 0, and X,, where I is admissible, t(I) > Ar, and t(I) = 1 (mod 2).

Proof. The result is trivial if Ar = 0, so assume Ar > 0.

As remarked earlier, if 3A, = T,eaX,, where each Ia is admissible, then, in

Ex(Bx(k)), dxXj = EeaX,, where this latter sum runs only over those A; in

Ex(Bx(k)). This procedure will now be used to identity cycles and boundaries of

Ex(Bx(k)) in the desired range of dimensions.

For the rest of this proof, all sequences 7 should be assumed admissible with

dim A, < 2Ar + 1. Let Z(t) = (0.0), the sequence of t zeros.

Suppose that 7 = (ix,...,/ ), /   > 0. By (4.3) and (4.5), we may write

9X/ = («', - 1)A((].Vl.,,-i.<„ + EX(/„,*-i) + Exv

where 0 < t(Jfj) < Ar - 1. Moreover, since 3X0 = 0 and 3 is a derivation,

3X(/.;?(,)>= (3X,)XZ(r)= (iq~ 1)X((].iq [,,-?_i,Z(,+i))

+ L\/„t-i,z(D) + L\;j,z(t))'

This yields the following formulas in Ex(Bx(k))\

(4.7a) If *(/) = iq > Ar, then</,X, = (/, - l)X(/l.(-,_„/,-i.o)-

(4.7b) If (7, Z(t)) is Ac-acceptable, 1(1) > l,andf(7) = iq > 0, then

<^iX(/.z(i)) = (',/ ~ 'jX,,,.iq lJq. i.ztn i» +(k ~ 1)EX(/„,a-i,z(i))-

A careful inspection of these formulas (see the following note) reveals that, for

t - s < 2Ar, the 7:1(i51(Ac))-cycles have a basis consisting of those X; for which

either:

(i)7 = Z(t),t >0;

(w)t(l) > k,t(I)= 1 (mod2); or

(iii) / = (/', Z(t)) is Ac-acceptable, t(I') = 1 (mod2);
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and that the £1(51(Ac))-boundaries are generated by precisely those elements of type

(iii). This produces the E2 term stated in the lemma.

(Note on proof. When Ac is even, the analysis given above requires some special

care because sequences of the form 7 = (/', Ac — 1, Z(t)) are then Ac-acceptable. This

accounts for the presence of the second term on the right-hand side of formula

(4.7b). However, one can show by induction on t that, for sequences 7 of this form,

X, is a boundary, using (4.7a) to start the induction and (4.7b) to continue. It then

follows directly from (4.7b) that all basis elements of type (iii) are boundaries; in

fact, this is probably the easiest way to see that such elements are cycles. Clearly,

(4.7a) and (4.7b) imply that type (iii) elements generate all possible boundaries, and

it is not hard to check that (i)-(iii) account for all possible cycles.)   □

We next show that Esr'(Bx(k)) collapses from E2 on (still assuming t - s < 2Ar).

This will be accomplished through a comparison with the Adams spectral sequence

forfl(Ac).

Recall from (2.12), that, for the map ik: Bx(k) -> 7?(Ac), the induced homomor-

phism (ik)*: H*B(k) -* H*Bx(k) is the canonical projection M(Ac) -» Mx(k). Thus,

(ik )* is covered by a map of resolutions 3 -* c€:

-»     Dq     -     Dq_x     -     •■•      -     D0     -      M(Ar)->0

I i i i(/*)'

•••      -     Cq     -     Cq_x     -     •■•      -     C0     -     M1(Ac)-0

(By definition, Dq c Cq, and the maps Dq -» Cq above are the inclusions.) This in

turn induces a map of spectral sequences (ik)#: Er(Bx(k))-+ Er(B(k)). Lemma

(4.6) identifies E{<'(Bx(k)) as a subcomplex of E2s'(B(k)) when 1 < t - s < 2k;

that is, (ik)*: E2'(Bx(k)) -» E2'(B(k)) is injective in this range of total dimensions.

But, according to (4.2)(a), when 1 < t - s < 2Ac, E{'(B(k)) = E^'(B(k)), i.e, the

spectral sequence collapses. As a subcomplex, Esr'(Bx(k)) must behave in the same

way, and this enables us to write down E^'(Bx(k)).

Lemma (4.8). EI'(Bx(k)) = EsJ(Bx(k)) for t - s < 2Ac.   D

Corollary (4.9). (it)„: irq(Bx(k)) -> irq(B(k)) is injective if \ < q < 2Ar.

Proof. The preceding arguments show that (ik)*; E^'(Bx(k)) -» E^'(B(k)) is

injective for 1 < t - s < 2Ar. The corollary follows by an easy induction over the

Adams filtration.    □

We now close this discussion by listing some of the homotopy groups of Bx(k).

Let Z2 = lim Z2, denote the 2-adic integers.

Theorem (4.10). (a) ir0(Bx(k)) = Z2.

(b) All elements of irq(Bx(2k)) = trq(Bx(2k + 1)), 1 < q < 4Ac + 2, are of order 2.

A Z2-basis for these groups is in one-to-one correspondence with {X,\I admissible,

dimX/S$ 4A + 2, t(I)> 2k + 1, /(/) = 1 (mod2)}.

Proof. Recall that in the A-algebra, left multiplication by X0 corresponds to

precomposition with the degree 2 map 5° -» 5°, i.e., A0 = h0 in the usual Adams
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spectral sequence notation. Thus, a nontrivial left multiplication by A0 in Ex

indicates the presence of a nontrivial extension.

Statement (a) of the theorem now follows directly by looking at the tower of

elements XJ0,j > 0, of total dimension 0 in Ex(Bx(k)).

To prove (b), we use the cofibration of spectra

Ti^Ar) = Bx(2k + 1) ^ 7i1(2Ar + l)'^+1£(2Ar + 1),

the existence of which was verified in (2.15). This yields a long exact sequence of

homotopy groups

• • •  - trqBx(2k + 1) -i trqBx(2k + l)('2^\s(2* + 1)

- *q-M2k + 1) -»....

By (4.9), (i2k + x)*: trq(Bx(2k + 1)) -» trq(B(2k + 1)) is injective for 1 < q < 4Ac + 2.

Hence, 2trq(Bx(2k + 1)) = 0 by exactness, i.e, all elements have order 2.

The statement concerning a Z2-basis for these groups is a consequence of the

description of E^'(Bx(k)) = E{-'(Bx(k)) given in (4.6).   □

Remarks. (1) Recall that the group structure of tr2k(B(k)) has not been com-

pletely determined. Property (b) of (4.1) identifies a rather large subgroup, namely,

(/A.)+(772yt(7?j(Ac))), as consisting entirely of elements of order 2.

(2) Outside the range of dimensions handled in (4.10), the groups irq(Bx(k)) will

have elements of order greater than 2. For instance, let/e tt2Jh(B(2j)) be a map

represented by A2,+i, as discussed in the remark following (4.2).

Consider the cofibration

BX(2J - 1) - BX(V) % B(V).

Since X"0X2/-i = A2,-„*i(A2j-»*iA2, „+2 • • • A2,) in Ex(B(2')), the spectral sequence

calculations given earlier show that neither / nor any of its multiples can lie in the

image of

(i2j)m:w2j+l(Bx(2J))-*iT2j^(B(V)).

Thus, from the long exact sequence

••■  ^ *q{Bx(V - \)) ^ TTq{Bx(V))('^\q{B(V)) ^ TTq_x{Bx(V - I)) ^ ••-,

one sees that 8/e it2j+i_x(Bx(2j - 1)) has order 2J+2.

5. Bx(k) representability of homology classes. Given spectra E and X, En(X) and

E"( X) will denote the nih generalized homology and cohomology groups of X with

respect to E, e.g., En(X) = mn(E A A').

Recall from §2 the commutative diagram:

Wk        c      S2253(3)

g* \ / g

BO
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The inclusion  Wk c S22S3(3)  induces a map of Thom spectra T(gk) -» T(g).

Completing this at 2 and using (2.10) then yields a map: j:  Bx(k) -» K(Z2)

representing the Thom class of Bx(Ac).

The object of this section is to prove

Theorem (5.1). For any CW complex X,

j*:Bx(k)„(X)^Hn(X;Z2)

is surjective, provided that n < 2k + 2.

The proof will be given in §5.2. The arguments in this proof can then be easily

used to discover conditions which characterize Bx(k), and this process is carried out

in §5.3.

An immediate consequence of (5.1) is

Corollary (5.2). Suppose that M is a Z-orientable, closed n-manifold. Let v be its

stable normal bundle, denote the Thom spectrum by T(v), and let Uz. T(v) -» K(Z2)

represent the Thom class. Then M is Bx([n/2])-orientable in the sense that there is a

class UB e Bx([n/2]f(T(v)) = [T(v), Bx([n/2])\ such thatj*UB = Uz, i.e., such that

the diagram

~~lh~-^K{Z2)

commutes.

Proof. It is well known that the suspension spectrum of M+ is S-dual to T(v).

(M+ means M plus a disjoint base point.) Now, by (5.1), y'*: Bx[n/2]n(M+) -»

Hn(M+; Z2) is surjective so that, under 5-duality, y„: Bx[n/2]°(T(i>)) -*

H°(T(v); Z2) must be surjective, too. The result follows by pulling back the Thom

class Uz.   □

Remark. Let Ur e 77°(r(»')) denote the mod2 Thom class, and let 7„ = {a e

A\aU„ = 0 for all Z-orientable, closed n-manifolds M}. For instance, Sq1 e 7„ for

any n. A fairly straightforward calculation, utilizing the connection between S-dual-

ity and the canonical antiautomorphism x'. A -* A, shows that

^{Sq1,X(Sq')|/>[«/2]}c7n.

Thus, for any Z-orientable, closed /i-manifold, there is always an algebraic factoriza-

tion of Uz

Mx[n/2]

j* /< \ v

A/A{Sq1} U-i H*{T(v))
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where j* is the projection. (5.2) then says that one can geometrically realize the

homomorphism v above by a Bx[n/2] Thom class UB.

Furthermore, 7„ has been determined explicitly by Brown and Peterson [5], and,

when n ¥= 0 (mod4), their calculations show that 7„ = ^{Sq\ X(Sq')|» > [n/2]}.

Thus, for such n, Bx[n/2] has the smallest possible cohomology for any spectrum

possessing the orientability property of (5.2), meaning that, in this sense, (5.2) is best

possible.

As usual, the results here are analogous to properties of the Brown-Gitler

spectrum B(k). This time, the corresponding theorems, due to Brown and Gitler, are

Theorem (5.3) [3]. If a: B(k) -» K(Z2) is the map representing 1 e H*B(k) =

M( k), then, for any CW complex X,

a*:B(k)n(X)-*HnX

is surjective, provided that n < 2k + 2.    D

Corollary (5.4) [3]. Suppose that Mis any closedn-manifoldand U: T(v) -» K(Z2)

represents the (mod 2) Thom class. Then M is B[n/2]-orientable in the sense that there

is a class U e B[n/2]°(T(v)) such that a+U = U.   D

5.1. Background and notation. In this subsection, we organize the material needed

to prove (5.1).

First of all. Brown and Gitler actually proved a result which is slightly stronger

than (5.3), and this stronger version is what we shall use in the proof of (5.1). To

state it, we need to review a few details about the way that B(k) is constructed.

Let 3 = 3(k) denote the /1-free resolution of H*B(k) described in (3.5):

9: ■■■  ^Dq^Dq_x -» ••■  - D0 ̂  M(k) - 0.

Based on this resolution, Brown and Gitler explicitly constructed a generalized

Postnikov tower3T for B(k):

3T: :

i

'Vi

aq i

i

i

70 = L0 - Lx
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That is, the 7 are £2-spectra, and the Lq are generalized Eilenberg-Mac Lane spectra

such that it*L is a graded vector space over Z2 and 77*L(/ = Dq. Also, aq:

Y„-* 7„  i  is the fibration with fibre L„ induced by h. from the contractible
q q- 1 17 J        q

fibration over Lq. (h   is a morphism of degree one, i.e., (hq),: (Yq_x)t -^:(Lq)l+x.) If

e^: Lq -» 7? denotes the inclusion of the fibre, then (hq+xeq)*: H*Lq+x -> 77*L(; is

the same as the differential d: Dq+X -» 7J>?. Note that the base spectrum of the tower,

L0, satisfies H*L0 = D0 = A, and hence L0 = K(Z2).

With this machinery in place, B(k) is defined as the limit space

B(*) = y.-lim Y„.

The construction of the tower 3T is carefully controlled to possess the following

property.

Lemma (5.5). For any CW complex X,

is surjective, provided that n < 2k + 2.

Proof. Given an abelian group G, define ch(G) = Hom(G, R/Z). In [3], Brown

and Gitler discuss a functor x on spectra, the Pontrjagin duality functor, whose main

property is that, for any spectrum h and CW complex X,

(5.6) x(h)"(X) = Ch(hn(X))

(assuming that hn(S°) is finite for all n).

Applying x to the fibration Lq -* Y -^> Y   x then produces another fibration

x(o„)
x(Yq-i) -» X(y„) -» X(^) induced by x("q)- x(Lq) -» x(y^i)- An important

detail in Brown and Gitler's work is that x(h <,)„'■ X(Lq)n -» X(7 i)„+1 is zero

when n < 2k + 1 (see [3, Theorem 5.1(iv)]). Therefore, x(<*q)*- X(Yq-l)"(X) ->

X(Yq)"(X) is injective for n < 2k + 2. Equivalently, after applying (5.6), («(/)*:

(Yq)n(X) -> (Yq_x)„(X) is surjective for n < 2k + 2.   a

(5.5) can also be stated more directly in terms of Postnikov towers. Namely,

consider the complex

3 ® 77**: • • • -> Dq ® H*Xd^ Dq_x ® II*X -> • • ■

-> £>0 ® H*XF^M(k) ® 77**^0.

This is an ,4-free resolution of H*(B(k) A X) = M(k) ® 77*X (Here, each Dq ®

77** has the diagonal /1-module structure, that is, a(x ® y) = Ea,'oc ® cr"y, and an

argument involving the formula x(fl)X' ® y = Ex(a,')(X' ® a"y) shows that these
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modules are in fact free over A.) Associated to this resolution is a Postnikov tower

3T A X with limit space B(k) A X:

B(k) A X

3TAX: :

i

h ,+ 1Aid

YqAX - Lq+XAX

a   A id i

A  Aid

Yq_xAX - L?A*

I

i
h. Aid

y0 a *        ->       llai

The content of (5.5) is that any map u: S" -» 7^., A A", « < 2Ac + 2, lifts up the

tower to Yq A X (and hence, by induction, all the way up to 7?(Ac) A X). Of course,

if one happens to start with u: S" -> 70 A X = K(Z2) A X, the result is (5.3).

The proof of (5.1) will make use of the tower 3T A X, as well as similar towers for

Bx(k) A X and K(Z2) A X.

The following notation of modules and spectra shall be preserved for the rest of

the section.

First, let #= #(Ar) denote the free resolution for Mx(k) described in (3.10):

<€:■■■ ^Cq^Cq_x^ ■■■ -C0-M1(Ac)-0;

and let ^T denote a Postnikov tower associated to it with limit space Bx(k) (recall

that Bx(k) was defined as a 2-completion):

Bx(k)

vT-. i

Xq ~* Kq+l

i
k<

XC-\ ~* Kq

i

i
*1

^0 = -^o        ~* ^1

As with 3T, at the bottom of the tower, one has *0 = K(Z2).
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Similarly, let g=£(k) denote the "Ac-acceptable" resolution of H*(K(Z2)) =

A/A{Sq*} given by (3.15):

«f: •••  -»£9^ Eq_x-> ••■ ^E0^A/A{Sql}^0;

and let ST denote a Postnikov tower based on this resolution having as limit space

the 2-complete spectrum K(Z2):

K(Z2)

Of- •

i

'V+i

Vq - Rq+l

i

i

i

F0 = R0      -        7?:

In particular, V0 = 7C( Z2).

In the previous resolution, one can tensor all modules with 77** and differentials

with the identity in order to obtain new resolutions, denoted by 'g'® 77** and

<c?® //**. These in turn give rise to new Postnikov towers, denoted #r A * and

ST A X, obtained by smashing all spectra with * and all maps with the identity.

Now, recall from (2.12) that the map ik: Bx(k) -* 7J(Ar) produces a homomor-

phism in cohomology, (ik)*: H*B(k) -* H*Bx(k), which is the obvious projection

M(Ac) -» Af^Ar). Thus, (ik)* ® id is covered by a map of resolutions 3 ® 77** -» #

® 77**:

••-  - Dq® H*X^ Dq_x ®H*X^ ■ ■■ - DQ® H*X-* M (k)<2> H*X^0

I i i l(/A)*®id

••■  -» Cq ® H*X^ C,_, ®H*X^ ■■■ - C„® ff*X- W,(A-)®//*X-»0

(Recall that, by definition, D c C , and the vertical maps are the inclusions.) Then,

by naturality, there is an associated map of Postnikov towers (ik)T A id: #r A * ->

3T A X:
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Bx(k) A X     '"^       B(k)AX

I 1
XqAX -> Yq A X

i i

Xq-XAX        -        Yq„xAX

i I

I I
*0 A * -> 7„ A *

Similarly, for the map y: Bx(k) ^> K(Z2), the induced homomorphism y*:

H*(K(Z2)) -> H*Bx(k) is the projection A/A{Sqx) -» Af^Ac). Thus, there is an

obvious map of resolutions <f ® 77** -» #® 77** coveringy* ® id. (By definition,

Eq c Cq, so that £ maps to ^by inclusion.) And, once again, one winds up with an

associated map of Postnikov towersyr A id: ^T A X -» ST A X.

The idea is that all this notation can be molded into a sensible proof of (5.1).

5.2. Proof of Theorem (5.1). To begin the proof of (5.1), let w e 77„(*; Z2) be

given, n < 2k + 2. Represent w as a map w: S" -» 7v(Z2) A *. Then w can be

regarded as a coherent sequence of maps wq: S" -> Vq A X up the tower ST A X:

K(Z2) AX

"x  = M'    / i

/ /VqhX

/    X    ViA^

5"->- V0 A X

Note that w0: 5" -> 1^, A * = 7C(Z2) A * represents the mod2 reduction of the

homology class w.

We want to find u e ^(Ar),^*) (i.e., u: S" -» B,(Ac) A *) such that y'*M = w.

The strategy will be to show inductively that w0 lifts up the tower lfT A X all the way

to Bx(k) A X in a manner compatible with the class w. That is, we shall complete the

diagram:
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Bx(k) A x-—-y K(Z2) A X

11/             i                      ^^^ i

/        Xqi\X——r-^—-^l;a*

/ 4'   >-^ ■]/

5"->X0 A X        =     K(Z2) A X     = K0 A *
w0

Inductive assumption. Assume that there exist maps u0, ux,...,uq, where u{.

S" -» X-, A X, which make the following diagrams (P ) and (Q ) commute:

(Pq): Bx(k)AX

i

XqAX

U1   / Xq-1   A  X

'        "o
S"-^*0 A *

(Qq): Bx(k)AX     J^>K(Z2)AX

i I
7, A id

"«xXqAX _Z^VqAX

sn-~

Begin the induction by taking u0 = wQ.

Next, assume that u0,...,uq_x have been found satisfying (Pq_x) and (Qq-X). We

shall describe how to choose uq so that (P ) and (Q ) hold.

(Pq) Showing that uq_x lifts to Xq A *is equivalent to verifying that Ar^.., = 0,

where Acq = kq A id is the Ac-invariant for Xq A X -> Xq_ x A X in the tower <€T A X:
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Bx(k) AX

i

Xq A X

i
uq-\ k'

S"       ->        Xq_x AX       -*      KqAX

Since Kq A X is a generalized Z2 Eilenberg-Mac Lane spectrum, this is the same as

showing that (k'quq_x)* = 0 in cohomology, i.e., that (k'quq_x)*(X' ® x) = 0 for all

^-basis elements A7 e H*Kq = Cq and all x e 77**.

Recall that Cq has two types of basis elements, namely, A7 with 1(1) = q such that

either f(7) > Ac or 7 is Ac-acceptable.

First, suppose that t(I) > Ac. Then, as part of the mapping of towers (ik)T A id:

#r A * -> 3T A X, there is a commutative diagram involving the Ac-invariants Ac^

and h'q = hq A id:

Bx(k) A X-—->B(k) A X

j      ky*K«AX-7——yrL^x

s"-^x«-> A x-^T^7-1 A x

where (eq)*\ H*(Lq AX)-* H*(Kq A X) is the inclusion Dq ® 77** -» Cq ® 77**.

Now, by (5.5), (/ft)'M?_i lifts to 7? A *. Hence, h'q(ik)'uq_x = 0, so that

0 = (eqk'quq_x)*(\' ® x) = (k'quq_x)*e*(Xr 9 x) = (Ar;«,_1)*(X7 ® x),

as desired.

Secondly, suppose that 7 is Ac-acceptable. Then, as part of the mapping of towers

jT A id: tfj- A X -> £T A X, there is a commutative diagram involving the Ac-in-

variants Ar^ and r' = rq A id:

Bx(k) A X-—->K(Z2) A X

| k'      Kq A X--pRq A X

X,_i A *-y-_, ^3rv«-i A *
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where (tq)*: H*(Rq A X) -> H*(Kq A X) is the inclusion Eq ® 77** -» Cq ® 77**

andy'^_! =y,_i A id. (Note that w?_1 = j'q-\Uq_x by induction.) Since w9_1 lifts to

Vq A *as w?, it follows that rqj'q_xuq_x = rqwq_x = 0. Therefore,

0 = {tqk'quq_ 1)*(A7 ® x) = (Ar;«,_i)%*(X' ® x) = (Ac;M?_1)*(A7 ® x).

These calculations show that k'quq^x = 0. Consequently, there exists zq. S" -»

*? A * satisfying property (7^).

(<2,y) Consider the commutative diagram involvingyr A id: #r A X -»<fr A *:

Ti^Ac) A *— > 7v(Z2) A *

i 1

*„ A *--->- VqAX

{ /^   i

Xq_x A *      *"'     > Fg_x A *

sn^--~~^

Recall that Kq A X denotes the fibre of *? A * -> *^, A * and 7?? A A' denotes

the fibre of Vq A X -» Vq_x A X.

We would like to check ify'z^ and wq are equal. If not, then as two liftings of wq_x,

they must differ by a map e into the fibre 7?^ A *, i.e., wq =jqzq + e for some e:

S" -> Rq A X. But since H*(Rq A X) = Eq ® 77** c Cq ® 77** = H*(Kq A X),
e' '</

such an £ would factor as 5" -> Kq A X -> Rq A X. Let e" denote the composition

of e' with the inclusion of the fiber Kq A X -» Xq A X. Then by letting uq = zq + e",

one obtains a map satisfying property (Qq).

We should remark that this map, uq, will still satisfy property (7^), since zq and uq

differ by a map into Kq A X and the composition K A X -+ Xq A X -+ Xq_x A X

is zero.

This completes the induction.

Set u = ux, and it is clear thaty„,w = w.   □

5.3. Homotopy characterizations of Bx(k). Our goal in this subsection is to find

necessary and sufficient conditions which determine whether a given spectrum is

homotopy 2-equivalent to the spectrum Bx(k). In [6], Brown and Peterson for-

mulated various sets of conditions of this type for the Brown-Gitler spectrum B (Ac).

For example, they proved that a spectrum 7 is homotopy 2-equivalent to 5(Ac) if

and only if 77*7 = Af(Ac) and the homology surjectivity of (5.3) remains valid with Y

in place of 7?(Ac). The proof of this result, as well as other results like it. depended on

properties of the Postnikov tower 3T together with a rather exotic condition on

manifolds related to Brown and Peterson's earlier work on characteristic classes [5].
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Our approach here will be to apply Brown and Peterson's methods to the tower ^T

—the arguments involved are quite similar to those used in the proof of (5.1). In the

end, this will lead us to the desired characterizations of Bx(k).

We begin with a definition motivated by the work of Brown and Peterson [6, p.

289].

Definition (5.7). Suppose that A is a closed ^-manifold, v is its stable normal

bundle, T(v) is the Thom spectrum of v, and v e Hp(T(v)). Then (N, v) is said to

be adapted to Mx(k) if n - p < 2k + 2 and

0 -»i4{S^,x(Sq')U> k) ^ A ̂  H*(T(v))

is exact, where v*(a) = av.

The notion of adapted manifolds is somewhat unmotivated at this point. How-

ever, we can at least show that it is not vacuous.

Lemma (5.8). There exists a Z-orientable, closed (2k + \)-manifold Qk such that, if

U„    e H°(T(v0 )) is the Thom class, then (Qk, Uv   ) is adapted to Mx(k).

Proof. Let 7„ = [a e A\aUv = 0 for all Z-orientable, closed n-manifolds A/}.

Brown and Peterson [5] showed that

/2,+1 = /l{Sq1,X(Sq')|/>Ar}.

Let {va} denote a Z2-basis for A/I2k + X = Mx(k). For each va, choose a Z-orienta-

ble, closed (2Ac + l)-manifold Na such that vaUPN # 0. Then let Qk = #aNa.   a

Now, for some notation:

Let pq: Vx = K(Z2) -> Vq denote the projection down the tower ST. For instance,

p0: K(Z2) -» V0 = K(Z2) represents reduction mod2.

Also, lety : *  -» V denote the <^th stage of the mapping of towers jT: ^T -* ST.

Definition (5.9). Suppose that * is a spectrum and let z: * -» K(Z2) be given.

Then a map v. X -* Xq is called a Ac-acceptable g-lifting of p0z if the following

diagram commutes:

*rK(Z2)

t*^'^ i P„

X-     -+Xq—-—>vq

\i 1

: :
i i

k

Recall that, in the Postnikov tower <€T for Bx(k), if kq. Xq_x -» Kq denotes the

Ac-invariant and i: Kq_x -» Xq_x is the inclusion of the fibre, then (kqi)*: H*Kq -»

H*Kq_x realizes the differential d: Cq -* Cq_x of the resolution #(Ac). We next show
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that this fact, along with the existence of adapted manifolds, actually characterizes

the Ac-invariant Ac^.

Theorem (5.10). Suppose that N is a closed n-manifold, z e Hp(T(vN); Z2), and

n - p < 2k + 2. Let vq_x: T(vN) -» Xq_x be a k-acceptable (q - \)-lifting of p0z.

Then:

(a) vq_x lifts to a k-acceptable q-lifting vq: X -* Xq of p0z.

(b) Furthermore, if (N, p0z) is adapted to Mx(k), then kq is the unique map such

that (kqi)* = d and kqvq_x = 0.

Proof. The proof of (a) becomes identical to the proof of (5.1) after applying

5-duality. Hence, we shall only sketch the necessary steps.

First, we may regard vq_x as an element of (Xq_x)p(T(vN)). Let uq_x: S"~p -*

Xq_x A N+ represent a class in (Xq_x)n_p(N+) 5-dual to vq_x. Similarly, let

w e Hn_p(N+; Z2) be S-dual to z. Now, the proof of (5.1) shows that uq_x lifts to a

map « : S"~p -> X A N+ in a way compatible with both the homology class w and

the mapping of towers jT A id: frAf+->^A N+. Let vq: T(vN)^> Xq represent

a cohomology class in (Xq)p(T(vN)) S-dual \.o\uq. Then vq satisfies the conclusion of

(a).

To prove (b), note first that kqvq_x = 0 by (a). Since the tower

^Y:    ' ' '    ~~>  Xq ""*  Xq~\   ~*  Xq~2  ~*   ' - '

is constructed from an acyclic resolution of A/, (Ac), the image of 77**?_2 in H*Xq_x

is Mx(k); in fact, 77*A^, = Mx(k) © im Ac*. Thus, the sequence

Q^Mx(k)^H*Xq_x^H*Kq_x

is exact. Since kqvq_x = 0, v*x: H*Xq_x -> H*(T(vN)) factors through Mx(k),

splitting the above exact sequence, i.e., there is a commutative diagram of the form:

0^Mx(k)^H*Xq__x^H*Kq_x

\\/ \ M*
0^M1(Ac)^77*(r(.iV))

T

(Note that the homomorphism labelled t above must be injective because (N, p0z) is

adapted to M,(Ac).) Consequently, (Ac^)*: H*Kq^> H*Xq_x, and hence Ac^, is

uniquely determined by the conditions that kqvq^x = 0 and (kqi)* = d. This proves

(b).   □
Finally, we will use (5.10) to give two characterizations of Bx(k).

Corollary (5.11). Suppose that 7 is a spectrum such that H*Y = Mx(k). In

addition, suppose there is a map z: 7 -> 7v(Z2) such that p0z: 7 -» K(Z2) represents

1 e 77*7 If, for some (N,v) adapted to Mx(k), there is a map v: T(vN) -» 7 for

which p0zv = v, then 7 is homotopy 2-equivalent to Bx(k).
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Proof. We will construct Ar-acceptable ̂ -liftings of p0z by induction on q. Assume

by induction that/: 7 -» Xq_x is a Ac-acceptable (q - l)-lifting of pQz, yielding the

following commutative diagram:

/ A,

Y -      Xq_x      -     Kq

i

s /i     i p„z :

i

T{vN)      -      K(Z2)      =        *0
0

Since fv is a Ac-acceptable (q - l)-lifting of v = p0(zv), (5.10)(a) implies that

kqfv = 0. Moreover, since (N, v) is adapted to Mx(k), v*: 77*7 -* H*(T(vN)) is

injective. Hence, Ar?/ = 0, and, therefore, / lifts to /: Y -» A A priori, this lifting

need not be Ar-acceptable. However, by using the arguments described in the proof of

property (Qq) of (5.1), one can alter/, if necessary, to obtain a Ac-acceptable ̂ -lifting

of p0z. This completes the induction.

As a result, we may find a map F: Y -* Bx(k) which induces an isomorphism in

Z2-cohomology and is therefore a homotopy 2-equivalence.   □

Corollary (5.12). Suppose that 7 is a spectrum satisfying 77*7 = Mx(k) such that

Theorem (5.1) remains true with 7 in place of Bx(k). Then 7 is homotopy 2-equivalent

to Bx(k).

Proof. By assumption, there exists y: 7 -» K(Z2) such that p0y: 7 -» K(Z2)

represents 1 e 77*7. According to (5.8), one can find (Qk, Uv ) adapted to Mx(k),

where Qk is a (2Ar + l)-dimensional manifold. Since Y satisfies (5.1),/*: Y2k + x(Qk)

-» H2k + \(Qk', Z2) is surjective. Thus, by S-duality, /„: Y°(T(vq )) -*

77°(7'(j'et); Z2) is surjective, also. Let Uz: T(vQ ) -» K(Z2) represent the Thom

class, and choose a f/„ : T(vQ ) -» 7 such thaty{7„ = t/z. Then p0yf/„ = p0£/z =

t/„   . The result now follows directly from (5.11).   □

Appendix. An inductive definition of Bx(k). As mentioned in §2, the spectra 7?,(Ac)

were originally defined by Mahowald. In this appendix, we shall propose an

alternative, inductive definition based on the techniques of §5. The spectra that are

obtained by this induction will satisfy the properties heretofore ascribed to Bx(k),

so, in particular, by (5.12), they will be homotopy 2-equivalent to Bx(k).

Theorem (A.l). For each Ar > 0, there exists a spectrum B(k) satisfying the

following properties:

(a)77*B(Ac) = Mx(k).

(b) There is a map ik: B(k) -* B(k) fitting into a cofibration

B(k - 1) ^TT(Ac) ̂ Ti(Ac)

whose long exact sequence in cohomology realizes (2.13).

(c) Let p0: K(Z2) -» K(Z2) represent reduction mod 2. Then there exists a map jk.

B(k)^ K(Z2) such that p0jk: B(k) -* K(Z2) represents 1 e H*B(k).
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Proof. We shall proceed by induction on Ar.

If Ac = 0, define B(0) to be the sphere spectrum, completed at 2. Then 7?(0) = B(0),

so let i0 = identity. Also, define/,: B(0) -* K(Z2) to be the 2-completion of a map

representing a generator of 77°(5°; Z) = Z.

Next, assume that a spectrum B(k - 1) has been defined satisfying (A.l). The

following analysis relies on the fact that the proofs of §5 depend only on those

properties listed in (A.l). Thus, we may assume that the results of §5 are valid for

B(k - 1).

Let B: Mx(k - 1) -> Af(Ac) be the map of ,4-modules defined by B(\) = Sq1. The

following lemma is the key step in the proof of (A.l).

Lemma (A.2). There is a map b: B(k) -> 7T(Ar - 1) such that b*\ H*B(k - 1) -+

H*B(k) realizes B.

Proof of (A.2). Let 8: K(Z2) -» K(Z2) denote the (degree 1) Bockstein operation

associated to the exact sequence of groups

2 Po

0 -» Z2 -> Z\ -» Z2 -» 0.

Now, suppose a: B(k) -> 7C(Z2) represents 1 e H*B(k) and define z e

H1(B(k); Z2) by the equation z = da. Observe that p0z: B(k) -» A0 = .ty(Z2)

represents Sq1 e H*B(k).

Based on the resolution #(Ac - 1) of Af^Ac - 1), there is a Postnikov tower t>T

with limit space 7?(Ac - 1), denoted as follows:

tr: B(k-l)

i

X, ^     Vi

i

^?-i "^       ̂
I

i
*0 ->       TCj

We will show that, in the language of §5, p0z lifts all the way up the tower to

7?(Ac - 1) through (Ac - l)-acceptable ^-liftings. To do this, we again rely on some

results of Brown and Peterson.

Let Tn = {a e A\aU„M = 0 for all closed H-manifolds M}. Brown and Peterson [5]

proved that T2k = /l{X(Sq')|*' > Ac}. Thus, by arguments identical to those of (5.8),

one can find a 2Ac-dimensional manifold N such that, if v e H°(T(vN)) is the Thom

class, then

0 ^{x(Sq')|/> Ac} - ,4 ^ 77*(7>„))
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is exact. Next, according to (5.4), there exists a map v: T(vN) -* B(k) such that

av = v. Thus, we have the following commutative diagram:

S(k-l)

B(k) i

v / i a \ pQz Xx

i

T(vN)      -      K(Z2)       -»       K(Z2)     = *0
" Sq1

By induction, there are maps ik_x: B(k - 1) -» 5(Ac - 1) &ndjk_x. B(k - 1) -»

7C(Z5) which induce the obvious maps in cohomology and therefore yield maps of

Postnikov towers (ik-X)T: ^T -* 3T and (jk-X). #/ -* ST. Hence, to prove that p0z

lifts to 5(Ac - 1), one can simply repeat the proof of (5.11) and thereby obtain the

desired map b: B(k) -» B(k - 1).   □

Returning to the proof of (A.l), define 5(Ac) to be the fibre of b, and let ik:

B(k) -> 5(Ac) be the inclusion of the fibre. Then properties (a) and (b) follow

immediately from the exact sequence (2.13). (Recall that, in the stable category,

fibrations and cofibrations are equivalent.)

Note that the map b of (A.2) fits into the following commutative diagram:

K(Z2)

1 Po

B{k)      ^ B(k) ^      K(Z2)

hi \z IS

B(k-l)      _-»      K(Z2)
Jk-\

Since bik = 0, aik lifts to a mapyA: 7i(Ac) -» K(Z2) such that p0y'A = aik. ThenyA

satisfies property (c).

This completes the induction and thus proves (A.l).    D

Remark. Using the lifting techniques of (5.11) and (A.2), one can show that there

is a map h: B(2k) -» 7?(2Ac + 1) inducing an isomorphism in cohomology; therefore,

5(2 Ac) = B(2k + 1).

For completeness, we include one final result.

Let M2 denote the Z2 Moore spectrum. Note that, for purely algebraic reasons,

5(1) = M2.

Lemma (A.3). M2 a B(2k) = B(2k + 1).

Proof. Recall that {7}}°10 denotes the May filtration of tt2S3. The structure of

this filtration includes products Fm X Fn -» Fm+„ which, when translated to Thom

spectra, yield maps jtim „: B(m) A B(n) -* B(m + n).

Now consider the composition

/: M2 A B(2k)   ^lkB(\) A B(2k)^k B(2k + 1).
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It is easy to check that / induces an isomorphism in cohomology and hence must be

a homotopy equivalence.   □

Upon careful review, one finds that our prior findings about Bx(k) really

depended only on naturality arguments involving the maps ik: Bx(k) -» B(k) andy:

Bx(k) -* K(Z2); also, the computation of <ir^Bx(k) made use of the fact that

M2 A Bx(2k) ~ B(2k + 1). But, according to (A.l) and (A.3), the spectra 5(Ac)

possess completely analogous properties. Hence, our results on Bx(Ac) all go over to

5(Ac) with exactly the same proofs. In other words, we could have initially treated

5(Ac) as our basic object of study without any loss.
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