A partial order on the regions of $\textbf {R}^{n}$ dissected by hyperplanes
HTML articles powered by AMS MathViewer
- by Paul H. Edelman
- Trans. Amer. Math. Soc. 283 (1984), 617-631
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737888-6
- PDF | Request permission
Abstract:
We study a partial order on the regions of ${{\mathbf {R}}^n}$ dissected by hyperplanes. This includes a computation of the Möbius function and, in some cases, of the homotopy type. Applications are presented to zonotopes, the weak Bruhat order on Weyl groups and acyclic orientations of graphs.References
- Martin Aigner, Combinatorial theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 234, Springer-Verlag, Berlin-New York, 1979. MR 542445, DOI 10.1007/978-1-4615-6666-3
- Kenneth Baclawski and Anders Björner, Fixed points in partially ordered sets, Adv. in Math. 31 (1979), no. 3, 263–287. MR 532835, DOI 10.1016/0001-8708(79)90045-8
- C. Berge, Principles of combinatorics, Mathematics in Science and Engineering, Vol. 72, Academic Press, New York-London, 1971. Translated from the French. MR 0270922
- Anders Björner, Homotopy type of posets and lattice complementation, J. Combin. Theory Ser. A 30 (1981), no. 1, 90–100. MR 607041, DOI 10.1016/0097-3165(81)90042-X —, The weak ordering of a Coxeter group (to appear). —, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Report #3, Dept. of Math., Univ. of Stockholm, 1982.
- Anders Björner and Michelle Wachs, Bruhat order of Coxeter groups and shellability, Adv. in Math. 43 (1982), no. 1, 87–100. MR 644668, DOI 10.1016/0001-8708(82)90029-9
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197–205 (1972). MR 328944, DOI 10.7146/math.scand.a-11045
- Raul Cordovil, A combinatorial perspective on the non-Radon partitions, J. Combin. Theory Ser. A 38 (1985), no. 1, 38–47. MR 773553, DOI 10.1016/0097-3165(85)90019-6
- Paul H. Edelman, The Bruhat order of the symmetric group is lexicographically shellable, Proc. Amer. Math. Soc. 82 (1981), no. 3, 355–358. MR 612718, DOI 10.1090/S0002-9939-1981-0612718-4 C. Greene, Acyclic orientations (Notes), Higher Combinatorics (M. Aigner, ed.), Reidel, Dordrecht, 1977, pp. 65-68.
- Curtis Greene and Thomas Zaslavsky, On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs, Trans. Amer. Math. Soc. 280 (1983), no. 1, 97–126. MR 712251, DOI 10.1090/S0002-9947-1983-0712251-1
- Branko Grünbaum, Convex polytopes, Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. MR 0226496 G. Guilbaud and P. Rosenstiehl, Analyse algébrique d’un scrutin, Math. Sci. Humaines 4 (1960), 9-33.
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2 J. Lawrence, personal communication, 1982.
- P. McMullen, On zonotopes, Trans. Amer. Math. Soc. 159 (1971), 91–109. MR 279689, DOI 10.1090/S0002-9947-1971-0279689-2
- Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–189. MR 558866, DOI 10.1007/BF01392549
- Robert A. Proctor, Classical Bruhat orders and lexicographic shellability, J. Algebra 77 (1982), no. 1, 104–126. MR 665167, DOI 10.1016/0021-8693(82)90280-0
- George B. Purdy, Some combinatorial problems in the plane, Discrete geometry and convexity (New York, 1982) Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp. 65–68. MR 809192, DOI 10.1111/j.1749-6632.1985.tb14539.x
- Gian-Carlo Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368 (1964). MR 174487, DOI 10.1007/BF00531932
- G. C. Shephard, Combinatorial properties of associated zonotopes, Canadian J. Math. 26 (1974), 302–321. MR 362054, DOI 10.4153/CJM-1974-032-5
- Richard P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982), no. 2, 132–161. MR 654618, DOI 10.1016/0097-3165(82)90017-6
- Hiroaki Terao, Free arrangements of hyperplanes and unitary reflection groups, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), no. 8, 389–392. MR 596011
- Thomas Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975), no. issue 1, 154, vii+102. MR 357135, DOI 10.1090/memo/0154
- Thomas Zaslavsky, The geometry of root systems and signed graphs, Amer. Math. Monthly 88 (1981), no. 2, 88–105. MR 606249, DOI 10.2307/2321133
- Thomas Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982), no. 1, 47–74. MR 676405, DOI 10.1016/0166-218X(82)90033-6
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 617-631
- MSC: Primary 51M20; Secondary 06A10, 52A25
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737888-6
- MathSciNet review: 737888