Structural stability of equivariant vector fields on two-manifolds
HTML articles powered by AMS MathViewer
- by G. L. dos Reis
- Trans. Amer. Math. Soc. 283 (1984), 633-643
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737889-8
- PDF | Request permission
Abstract:
A class of vector fields on two-dimensional manifolds equivariant under the action of a compact Lie group is defined. Properties of openness, structural ability, and density are proved.References
- Edward Bierstone, General position of equivariant maps, Trans. Amer. Math. Soc. 234 (1977), no. 2, 447–466. MR 464287, DOI 10.1090/S0002-9947-1977-0464287-3
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Mike Field, Equivariant dynamical systems, Bull. Amer. Math. Soc. 76 (1970), 1314–1318. MR 277850, DOI 10.1090/S0002-9904-1970-12657-X
- M. J. Field, Transversality in $G$-manifolds, Trans. Amer. Math. Soc. 231 (1977), no. 2, 429–450. MR 451276, DOI 10.1090/S0002-9947-1977-0451276-8
- M. J. Field, Equivariant dynamical systems, Trans. Amer. Math. Soc. 259 (1980), no. 1, 185–205. MR 561832, DOI 10.1090/S0002-9947-1980-0561832-4
- Carlos Gutiérrez, Structural stability for flows on the torus with a cross-cap, Trans. Amer. Math. Soc. 241 (1978), 311–320. MR 492303, DOI 10.1090/S0002-9947-1978-0492303-2
- Philip Hartman, On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana (2) 5 (1960), 220–241. MR 141856
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173, DOI 10.1007/BFb0092042
- Nelson G. Markley, The Poincaré-Bendixson theorem for the Klein bottle, Trans. Amer. Math. Soc. 135 (1969), 159–165. MR 234442, DOI 10.1090/S0002-9947-1969-0234442-1
- W. de Melo, Moduli of stability of two-dimensional diffeomorphisms, Topology 19 (1980), no. 1, 9–21. MR 559473, DOI 10.1016/0040-9383(80)90028-2
- J. Palis, On Morse-Smale dynamical systems, Topology 8 (1968), 385–404. MR 246316, DOI 10.1016/0040-9383(69)90024-X —, A differentiable invariant of topological conjugacies and moduli of stability, Asterisque, vol. 49/50, 1977.
- Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR 669541, DOI 10.1007/978-1-4612-5703-5 J. Palis, G. L. dos Reis and G. Tavares, Modulus of stability of $SO(2)$-equivariant vector fields on ${S^3}$, and ${S^2} \times {S^1}$, preprint, 1982.
- J. Palis and S. Smale, Structural stability theorems, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 223–231. MR 0267603
- J. Palis and F. Takens, Topological equivalence of normally hyperbolic dynamical systems, Topology 16 (1977), no. 4, 335–345. MR 474409, DOI 10.1016/0040-9383(77)90040-4
- M. M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101–120. MR 142859, DOI 10.1016/0040-9383(65)90018-2
- Charles C. Pugh, The closing lemma, Amer. J. Math. 89 (1967), 956–1009. MR 226669, DOI 10.2307/2373413
- Charles Pugh and Michael Shub, Axiom $\textrm {A}$ actions, Invent. Math. 29 (1975), no. 1, 7–38. MR 377989, DOI 10.1007/BF01405171
- Genésio Lima dos Reis, Structural stability of equivariant vector fields, An. Acad. Brasil. Ciênc. 50 (1978), no. 3, 273–276. MR 511431
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Jorge Sotomayor, Structural stability and bifurcation theory, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 549–560. MR 0334285
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 633-643
- MSC: Primary 58F10; Secondary 57S15, 58F09
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737889-8
- MathSciNet review: 737889