On the arithmetic and homology of algebras of linear type
HTML articles powered by AMS MathViewer
- by J. Herzog, A. Simis and W. V. Vasconcelos
- Trans. Amer. Math. Soc. 283 (1984), 661-683
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737891-6
- PDF | Request permission
Abstract:
Three modifications of the symmetric algebra of a module are introduced and their arithmetical and homological properties studied. Emphasis is placed on converting syzygetic properties of the modules into ideal theoretic properties of the algebras, e.g. Cohen-Macaulayness, factoriality. The main tools are certain Fitting ideals of the module and an extension to modules of a complex of not necessarily free modules that we have used in studying blowing-up rings.References
- Luchezar L. Avramov, Complete intersections and symmetric algebras, J. Algebra 73 (1981), no. 1, 248–263. MR 641643, DOI 10.1016/0021-8693(81)90357-4
- Lâcezar Avramov and Jürgen Herzog, The Koszul algebra of a codimension $2$ embedding, Math. Z. 175 (1980), no. 3, 249–260. MR 602637, DOI 10.1007/BF01163026
- M. Brodmann, Asymptotic stability of $\textrm {Ass}(M/I^{n}M)$, Proc. Amer. Math. Soc. 74 (1979), no. 1, 16–18. MR 521865, DOI 10.1090/S0002-9939-1979-0521865-8
- Winfried Bruns, Zur Konstruktion basischer Elemente, Math. Z. 172 (1980), no. 1, 63–75 (German). MR 576297, DOI 10.1007/BF01182780
- Edward D. Davis, Ideals of the principal class, $R$-sequences and a certain monoidal transformation, Pacific J. Math. 20 (1967), 197–205. MR 206035
- J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188–204. MR 142592, DOI 10.1098/rspa.1962.0170
- E. Graham Evans and Phillip Griffith, The syzygy problem, Ann. of Math. (2) 114 (1981), no. 2, 323–333. MR 632842, DOI 10.2307/1971296
- John Fogarty, Truncated Hilbert functors, J. Reine Angew. Math. 234 (1969), 65–88. MR 244268, DOI 10.1515/crll.1969.234.65
- Robert M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Springer-Verlag, New York-Heidelberg, 1973. MR 0382254
- Robin Hartshorne and Arthur Ogus, On the factoriality of local rings of small embedding codimension, Comm. Algebra 1 (1974), 415–437. MR 347821, DOI 10.1080/00927877408548627
- Jürgen Herzog and Ernst Kunz (eds.), Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics, Vol. 238, Springer-Verlag, Berlin-New York, 1971. Seminar über die lokale Kohomologietheorie von Grothendieck, Universität Regensburg, Wintersemester 1970/1971. MR 0412177
- J. Herzog, A. Simis, and W. V. Vasconcelos, Approximation complexes of blowing-up rings, J. Algebra 74 (1982), no. 2, 466–493. MR 647249, DOI 10.1016/0021-8693(82)90034-5
- J. Herzog, A. Simis, and W. V. Vasconcelos, Approximation complexes of blowing-up rings. II, J. Algebra 82 (1983), no. 1, 53–83. MR 701036, DOI 10.1016/0021-8693(83)90173-4
- J. Herzog, A. Simis, and W. V. Vasconcelos, Koszul homology and blowing-up rings, Commutative algebra (Trento, 1981) Lecture Notes in Pure and Appl. Math., vol. 84, Dekker, New York, 1983, pp. 79–169. MR 686942
- Craig Huneke, On the symmetric algebra of a module, J. Algebra 69 (1981), no. 1, 113–119. MR 613861, DOI 10.1016/0021-8693(81)90131-9
- Craig Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math. 104 (1982), no. 5, 1043–1062. MR 675309, DOI 10.2307/2374083
- Craig Huneke, On the symmetric and Rees algebra of an ideal generated by a $d$-sequence, J. Algebra 62 (1980), no. 2, 268–275. MR 563225, DOI 10.1016/0021-8693(80)90179-9 I. Kaplansky, Commutative rings, Univ. of Chicago Press, Chicago, 1974.
- Michael Kühl, On the symmetric algebra of an ideal, Manuscripta Math. 37 (1982), no. 1, 49–60. MR 649563, DOI 10.1007/BF01239944
- Karsten Lebelt, Freie Auflösungen äusserer Potenzen, Manuscripta Math. 21 (1977), no. 4, 341–355 (German, with English summary). MR 450253, DOI 10.1007/BF01167853
- G. Levin and W. V. Vasconcelos, Homological dimensions and Macaulay rings, Pacific J. Math. 25 (1968), 315–323. MR 230715
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130
- Erich Platte, Zur endlichen homologischen Dimension von Differentialmoduln, Manuscripta Math. 32 (1980), no. 3-4, 295–302 (German, with English summary). MR 595423, DOI 10.1007/BF01299606
- D. Rees, On a problem of Zariski, Illinois J. Math. 2 (1958), 145–149. MR 95843
- Maria Evelina Rossi, A note on the symmetric algebras which are Gorenstein rings, Comm. Algebra 11 (1983), no. 22, 2575–2591. MR 733343, DOI 10.1080/00927878308822981
- Pierre Samuel, Anneaux gradués factoriels et modules réflexifs, Bull. Soc. Math. France 92 (1964), 237–249 (French). MR 186702
- A. Simis and W. V. Vasconcelos, The syzygies of the conormal module, Amer. J. Math. 103 (1981), no. 2, 203–224. MR 610474, DOI 10.2307/2374214
- Aron Simis and Wolmer V. Vasconcelos, On the dimension and integrality of symmetric algebras, Math. Z. 177 (1981), no. 3, 341–358. MR 618200, DOI 10.1007/BF01162067
- John T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206. MR 419359, DOI 10.1007/BF01389745
- Giuseppe Valla, On the symmetric and Rees algebras of an ideal, Manuscripta Math. 30 (1980), no. 3, 239–255. MR 557107, DOI 10.1007/BF01303330
- Udo Vetter, Zu einem Satz von G. Trautmann über den Rang gewisser kohärenter analytischer Moduln, Arch. Math. (Basel) 24 (1973), 158–161 (German). MR 344518, DOI 10.1007/BF01228192
- Jerzy Weyman, Resolutions of the exterior and symmetric powers of a module, J. Algebra 58 (1979), no. 2, 333–341. MR 540642, DOI 10.1016/0021-8693(79)90164-9
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 661-683
- MSC: Primary 13F15; Secondary 13C15, 13D25
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737891-6
- MathSciNet review: 737891