Contraction operators quasisimilar to a unilateral shift
HTML articles powered by AMS MathViewer
- by V. T. Alexander
- Trans. Amer. Math. Soc. 283 (1984), 697-703
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737893-X
- PDF | Request permission
Abstract:
Let ${U_n}$ denote the unilaterial shift of finite multiplicity $n$. It is shown that a contraction operator $T$ is quasisimilar to ${U_n}$ if and only if $T$ is of Class ${C_1}$., the canonical isometry $V$ associated with $T$ is pure and $T$ is $n$-cyclic with analytically independent vectors. For this, the notions of operators of analytic type and analytic independence of vectors are introduced. A characterization of the cyclic vectors of the Backward Shift is also presented.References
- W. S. Clary, Quasisimilarity and subnormal operators, Ph.D. thesis, The University of Michigan, 1973.
- R. G. Douglas, On the operator equation $S^{\ast } XT=X$ and related topics, Acta Sci. Math. (Szeged) 30 (1969), 19–32. MR 250106
- R. G. Douglas, H. S. Shapiro, and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 1, 37–76 (English, with French summary). MR 270196
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- William W. Hastings, Subnormal operators quasisimilar to an isometry, Trans. Amer. Math. Soc. 256 (1979), 145–161. MR 546912, DOI 10.1090/S0002-9947-1979-0546912-3
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 697-703
- MSC: Primary 47A45
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737893-X
- MathSciNet review: 737893