On certain elementary extensions of models of set theory
HTML articles powered by AMS MathViewer
- by Ali Enayat
- Trans. Amer. Math. Soc. 283 (1984), 705-715
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737894-1
- PDF | Request permission
Abstract:
In $\S 1$ we study two canonical methods of producing models of $\operatorname {ZFC}$ with no elementary end extensions. $\S 2$ is devoted to certain "completeness" theorems dealing with elementary extensions, e.g., using ${\diamondsuit _{{\omega _1}}}$ we show that for a consistent $T \supseteq \operatorname {ZFC}$ the property "Every model $\mathfrak {A}$ of $T$ has an elementary extension fixing ${\omega ^\mathfrak {A}}$" is equivalent to $T\vdash$ "There exists an uncountable measurable cardinal". We also give characterizations of $T\vdash$ "$\kappa$ is weakly compact" and $T\vdash$ "$\kappa$ is measurable" in terms of elementary extensions.References
- Ali Enayat, On certain elementary extensions of models of set theory, Trans. Amer. Math. Soc. 283 (1984), no. 2, 705–715. MR 737894, DOI 10.1090/S0002-9947-1984-0737894-1
- John E. Hutchinson, Elementary extensions of countable models of set theory, J. Symbolic Logic 41 (1976), no. 1, 139–145. MR 409182, DOI 10.2307/2272952
- John E. Hutchinson, Model theory via set theory, Israel J. Math. 24 (1976), no. 3-4, 286–304. MR 437336, DOI 10.1007/BF02834760
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Matt Kaufmann, Blunt and topless end extensions of models of set theory, J. Symbolic Logic 48 (1983), no. 4, 1053–1073 (1984). MR 727794, DOI 10.2307/2273669 H. J. Keisler, Extending models of set theory, J. Symbolic Logic 30 (1965), 269 (Abstract). —, Model theory for infinitary logic, North-Holland, Amsterdam, 1971.
- H. Jerome Keisler, Models with tree structures, Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1974, pp. 331–348. MR 0357108
- H. Jerome Keisler and Michael Morley, Elementary extensions of models of set theory, Israel J. Math. 6 (1968), 49–65. MR 237321, DOI 10.1007/BF02771605
- H. Jerome Keisler and Jack H. Silver, End extensions of models of set theory, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 177–187. MR 0321729
- R. Mac Dowell and E. Specker, Modelle der Arithmetik, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw, 1961, pp. 257–263 (German). MR 0152447
- J. B. Paris, Minimal models of $\textrm {ZF}$, The Proceedings of the Bertrand Russell Memorial Conference (Uldum, 1971), Bertrand Russell Memorial Logic Conf., Leeds, 1973, pp. 327–331. MR 0360254
- R. G. Phillips, Omitting types in arithmetic and conservative extensions, Victoria Symposium on Nonstandard Analysis (Univ. Victoria, Victoria, B.C., 1972) Lecture Notes in Math., Vol. 369, Springer, Berlin, 1974, pp. 195–202. MR 0476499
- Matatyahu Rubin and Saharon Shelah, On the elementary equivalence of automorphism groups of Boolean algebras; downward Skolem-Löwenheim theorems and compactness of related quantifiers, J. Symbolic Logic 45 (1980), no. 2, 265–283. MR 569397, DOI 10.2307/2273187
- Dana Scott, Measurable cardinals and constructible sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 521–524. MR 143710
- Saharon Shelah, Models with second-order properties. I. Boolean algebras with no definable automorphisms, Ann. Math. Logic 14 (1978), no. 1, 57–72. MR 501097, DOI 10.1016/0003-4843(78)90008-6
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 705-715
- MSC: Primary 03C62
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737894-1
- MathSciNet review: 737894