Weak solutions of the Gellerstedt and the Gellerstedt-Neumann problems
HTML articles powered by AMS MathViewer
- by A. K. Aziz and M. Schneider
- Trans. Amer. Math. Soc. 283 (1984), 741-752
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737897-7
- PDF | Request permission
Abstract:
We consider the question of existence of weak and semistrong solutions of the Gellerstedt problem \[ u{|_{{\Gamma _0} \cup {\Gamma _1} \cup {\Gamma _2}}} = 0\] and the Gellerstedt-Neumann problem \[ ({d_n}u = k(y){u_x}dy - {u_y}dx{|_{{\Gamma _0}}} = 0,\qquad u{|_{{\Gamma _1} \cup {\Gamma _2}}} = 0)\] for the equation of mixed type \[ L[u] \equiv k(y){u_{xx}} + {u_{yy}} + \lambda u = f(x,y),\qquad \lambda = \operatorname {const} < 0\] in a region $G$ bounded by a piecewise smooth curve ${\Gamma _0}$ lying in the half-plane $y > 0$ and intersecting the line $y = 0$ at the points $A( - 1,0)$ and $B(1,0)$. For $y < 0$, $G$ is bounded by the characteristic curves ${\gamma _1}(x < 0)$ and ${\gamma _2}(x > 0)$ of (1) through the origin and the characteristics ${\Gamma _1}$ and ${\Gamma _2}$ through $A$ and $B$ which intersect ${\gamma _1}$ and ${\gamma _2}$ at the points $P$ and $Q$, respectively. Using a variation of the energy integral method, we give sufficient conditions for the existence of weak and semistrong solutions of the boundary value problems (Theorems 4.1, 4.2, 5.1).References
- S. Agmon, L. Nirenberg, and M. H. Protter, A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolic type, Comm. Pure Appl. Math. 6 (1953), 455–470. MR 58835, DOI 10.1002/cpa.3160060402
- Ju. M. Berezans′kiĭ, Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. MR 0222718
- A. V. Bitsadze, Equations of the mixed type, A Pergamon Press Book, The Macmillan Company, New York, 1964. Translated by P. Zador; translation edited by I. N. Sneddon. MR 0163078 S. Gellerstedt, Quelques problémes mixtes pour l’equation ${y^m}{z_{xx}} + {z_{yy}} = 0$, Ark. Mat. Astr. Fysik 26A (1937). S. G Mikhlin, Linear equations of mathematical physics, Holt, Rinehart and Winston, New York, 1977.
- Cathleen S. Morawetz, A weak solution for a system of equations of elliptic-hyperbolic type, Comm. Pure Appl. Math. 11 (1958), 315–331. MR 96893, DOI 10.1002/cpa.3160110305
- M. H. Protter, An existence theorem for the generalized Tricomi problem, Duke Math. J. 21 (1954), 1–7. MR 60127
- Manfred Schneider, Funktionalanalytische Methoden zur Behandlung von linearen partiellen Differentialgleichungen vom gemischten Typ, Überblicke Mathematik, Band 7, Bibliographisches Inst., Mannheim, 1974, pp. 219–265. MR 0410113
- Manfred Schneider, Über schwache und halbstarke Lösungen des Tricomi-Problems, Math. Nachr. 60 (1974), 167–180 (German). MR 358095, DOI 10.1002/mana.19740600117
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 741-752
- MSC: Primary 35M05
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737897-7
- MathSciNet review: 737897