Concatenations applied to analytic hypoellipticity of operators with double characteristics
HTML articles powered by AMS MathViewer
- by Kil Hyun Kwon
- Trans. Amer. Math. Soc. 283 (1984), 753-763
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737898-9
- PDF | Request permission
Abstract:
We use the method of concatenations to get a sufficient condition for a class of analytic pseudodifferential operators with double characteristics to be analytic hypoelliptic.References
- Louis Boutet de Monvel, Opérateurs pseudo-différentiels analytiques et opérateurs d’ordre infini, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 3, 229–268 (French). MR 341189
- Louis Boutet de Monvel, Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm. Pure Appl. Math. 27 (1974), 585–639. MR 370271, DOI 10.1002/cpa.3160270502
- Louis Boutet de Monvel and François Trèves, On a class of systems of pseudodifferential equations with double characteristics, Comm. Pure Appl. Math. 27 (1974), 59–89. MR 350232, DOI 10.1002/cpa.3160270105
- P. C. Greiner and E. M. Stein, Estimates for the $\overline \partial$-Neumann problem, Mathematical Notes, No. 19, Princeton University Press, Princeton, N.J., 1977. MR 0499319
- Alain Grigis, Hypoellipticité et paramétrix pour des opérateurs pseudodifférentiels à caractéristiques doubles, Journées: Équations aux Dérivées Partielles de Rennes (1975), Astérisque, No. 34-35, Soc. Math. France, Paris, 1976, pp. 183–205 (French). MR 0488185 A. Grigis and L. P. Rothschild, A criterion for analytic hypoellipticity of a class of differential operators with polynomial coefficients, preprint.
- Guy Métivier, Analytic hypoellipticity for operators with multiple characteristics, Comm. Partial Differential Equations 6 (1981), no. 1, 1–90. MR 597752, DOI 10.1080/03605308108820170
- Johannes Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat. 12 (1974), 85–130. MR 352749, DOI 10.1007/BF02384749 E. M. Stein, An example on the Heisenberg group related to the Lewy operator, preprint.
- David S. Tartakoff, Local analytic hypoellipticity for $\square _{b}$ on nondegenerate Cauchy-Riemann manifolds, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 7, 3027–3028. MR 499657, DOI 10.1073/pnas.75.7.3027 —, Elementary proofs of analytic hypoellipticity for ${\square _b}$ and the $\overline \partial$-Neumann problem, Astérisque 89-90 (1981), 85-116.
- François Trèves, Concatenations of second-order evolution equations applied to local solvability and hypoellipticity, Comm. Pure Appl. Math. 26 (1973), 201–250. MR 340804, DOI 10.1002/cpa.3160260206
- François Trèves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the $\overline \partial$-Neumann problem, Comm. Partial Differential Equations 3 (1978), no. 6-7, 475–642. MR 492802, DOI 10.1080/03605307808820074
- François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 1, University Series in Mathematics, Plenum Press, New York-London, 1980. Pseudodifferential operators. MR 597144
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 753-763
- MSC: Primary 35H05; Secondary 22E30, 58G05
- DOI: https://doi.org/10.1090/S0002-9947-1984-0737898-9
- MathSciNet review: 737898