Operators with -algebra generated by a unilateral shift
Authors:
John B. Conway and Paul McGuire
Journal:
Trans. Amer. Math. Soc. 284 (1984), 153-161
MSC:
Primary 47B20; Secondary 47C15
DOI:
https://doi.org/10.1090/S0002-9947-1984-0742417-7
MathSciNet review:
742417
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: If is an operator on a Hilbert space
, this paper gives necessary and sufficient conditions on
such that
, the
-algebra generated by
, is generated by a unilateral shift of some multiplicity. This result is then specialized to the cases in which
is a hyponormal or subnormal operator. In particular, it is shown how to prove a recent conjecture of C. R. Putnam as a consequence of our result.
- [1] C. A. Berger and B. I. Shaw, Selfcommutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc. 79 (1973), 1193–1199, (1974). MR 374972, https://doi.org/10.1090/S0002-9904-1973-13375-0
- [2] L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of 𝐶*-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Springer, Berlin, 1973, pp. 58–128. Lecture Notes in Math., Vol. 345. MR 0380478
- [3] Richard W. Carey and Joel D. Pincus, An invariant for certain operator algebras, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 1952–1956. MR 344925, https://doi.org/10.1073/pnas.71.5.1952
- [4] Kevin Clancey, Seminormal operators, Lecture Notes in Mathematics, vol. 742, Springer, Berlin, 1979. MR 548170
- [5] Stuart Clary, Equality of spectra of quasi-similar hyponormal operators, Proc. Amer. Math. Soc. 53 (1975), no. 1, 88–90. MR 390824, https://doi.org/10.1090/S0002-9939-1975-0390824-7
- [6] L. A. Coburn, The 𝐶*-algebra generated by an isometry. II, Trans. Amer. Math. Soc. 137 (1969), 211–217. MR 236720, https://doi.org/10.1090/S0002-9947-1969-0236720-9
- [7] John B. Conway, On quasisimilarity for subnormal operators, Illinois J. Math. 24 (1980), no. 4, 689–702. MR 586807
- [8] John B. Conway, Subnormal operators, Research Notes in Mathematics, vol. 51, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981. MR 634507
- [9] Ronald G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 49. MR 0361893
- [10] William F. Osgood, A Jordan curve of positive area, Trans. Amer. Math. Soc. 4 (1903), no. 1, 107–112. MR 1500628, https://doi.org/10.1090/S0002-9947-1903-1500628-5
- [11] C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323–330. MR 270193, https://doi.org/10.1007/BF01111839
- [12] C. R. Putnam, The spectra of subnormal operators, Proc. Amer. Math. Soc. 28 (1971), 473–477. MR 275215, https://doi.org/10.1090/S0002-9939-1971-0275215-8
- [13] C. R. Putnam, Hyponormal operators with minimal spectral area, Houston J. Math. 6 (1980), no. 1, 135–139. MR 575921
- [14]
-, Singly generated hyponormal
-algebras, preprint.
- [15] M. Radjabalipour, Ranges of hyponormal operators, Illinois J. Math. 21 (1977), no. 1, 70–75. MR 0448140
- [16] Marc Raphael, Quasisimilarity and essential spectra for subnormal operators, Indiana Univ. Math. J. 31 (1982), no. 2, 243–246. MR 648174, https://doi.org/10.1512/iumj.1982.31.31021
Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B20, 47C15
Retrieve articles in all journals with MSC: 47B20, 47C15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1984-0742417-7
Keywords:
Hyponormal operator,
-algebra,
unilateral shift,
subnormal operators
Article copyright:
© Copyright 1984
American Mathematical Society