On the universal theory of classes of finite models

Author:
S. Tulipani

Journal:
Trans. Amer. Math. Soc. **284** (1984), 163-170

MSC:
Primary 03C13; Secondary 03C05, 03C60

DOI:
https://doi.org/10.1090/S0002-9947-1984-0742418-9

MathSciNet review:
742418

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: First order theories for which the truth of a universal sentence on their finite models implies the truth on all models are investigated. It is proved that an equational theory has such a property if and only if every finitely presented model is residually finite. The most common classes of algebraic structures are discussed.

- Frank W. Anderson and Kent R. Fuller,
*Rings and categories of modules*, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR**1245487** - Kirby A. Baker,
*Equational classes of modular lattices*, Pacific J. Math.**28**(1969), 9–15. MR**244118**
J. T. Baldwin, - Stanley Burris and H. P. Sankappanavar,
*A course in universal algebra*, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York-Berlin, 1981. MR**648287**
C. C. Chang and H. J. Keisler, - Ulrich Felgner,
*The model theory of FC-groups*, Mathematical logic in Latin America (Proc. IV Latin Amer. Sympos. Math. Logic, Santiago, 1978) Stud. Logic Foundations Math., vol. 99, North-Holland, Amsterdam-New York, 1980, pp. 163–190. MR**573947** - K. R. Goodearl,
*Ring theory*, Marcel Dekker, Inc., New York-Basel, 1976. Nonsingular rings and modules; Pure and Applied Mathematics, No. 33. MR**0429962** - George Grätzer,
*General lattice theory*, Birkhäuser Verlag, Basel-Stuttgart, 1978. Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 52. MR**504338** - George Grätzer,
*Universal algebra*, 2nd ed., Springer-Verlag, New York-Heidelberg, 1979. MR**538623** - David K. Haley,
*Equational compactness in rings*, Lecture Notes in Mathematics, vol. 745, Springer, Berlin, 1979. With applications to the theory of topological rings. MR**549030** - Graham Higman,
*A finitely related group with an isomorphic proper factor group*, J. London Math. Soc.**26**(1951), 59–61. MR**38347**, DOI https://doi.org/10.1112/jlms/s1-26.1.59 - Graham Higman,
*A finitely generated infinite simple group*, J. London Math. Soc.**26**(1951), 61–64. MR**38348**, DOI https://doi.org/10.1112/jlms/s1-26.1.61 - Kenkiti Iwasawa,
*Einige Sätze über freie Gruppen*, Proc. Imp. Acad. Tokyo**19**(1943), 272–274 (German). MR**14089** - Bjarni Jónsson,
*Algebras whose congruence lattices are distributive*, Math. Scand.**21**(1967), 110–121 (1968). MR**237402**, DOI https://doi.org/10.7146/math.scand.a-10850 - D. W. Kueker,
*A note on the elementary theory of finite abelian groups*, Algebra Universalis**3**(1973), 156–159. MR**347584**, DOI https://doi.org/10.1007/BF02945116 - Anatoliĭ Ivanovič Mal′cev,
*The metamathematics of algebraic systems. Collected papers: 1936–1967*, North-Holland Publishing Co., Amsterdam-London, 1971. Translated, edited, and provided with supplementary notes by Benjamin Franklin Wells, III; Studies in Logic and the Foundations of Mathematics, Vol. 66. MR**0349383** - A. I. Mal′cev,
*Algebraic systems*, Springer-Verlag, New York-Heidelberg, 1973. Posthumous edition, edited by D. Smirnov and M. Taĭclin; Translated from the Russian by B. D. Seckler and A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 192. MR**0349384** - R. S. Pierce,
*Modules over commutative regular rings*, Memoirs of the American Mathematical Society, No. 70, American Mathematical Society, Providence, R.I., 1967. MR**0217056**
A. Robinson, - Walter Taylor,
*Residually small varieties*, Algebra Universalis**2**(1972), 33–53. MR**314726**, DOI https://doi.org/10.1007/BF02945005 - Oscar Zariski and Pierre Samuel,
*Commutative algebra. Vol. 1*, Springer-Verlag, New York-Heidelberg-Berlin, 1975. With the cooperation of I. S. Cohen; Corrected reprinting of the 1958 edition; Graduate Texts in Mathematics, No. 28. MR**0384768** - Stanley Burris and Heinrich Werner,
*Sheaf constructions and their elementary properties*, Trans. Amer. Math. Soc.**248**(1979), no. 2, 269–309. MR**522263**, DOI https://doi.org/10.1090/S0002-9947-1979-0522263-8 - Ralph McKenzie,
*On spectra, and the negative solution of the decision problem for identities having a finite nontrivial model*, J. Symbolic Logic**40**(1975), 186–196. MR**376323**, DOI https://doi.org/10.2307/2271899

*Review*:

*Selected papers of Abraham Robinson*. Volume 1, J. Symbolic Logic

**47**(1982).

*Model theory*, Studies in Logic, North-Holland, Amsterdam, 1973.

*On axiomatic systems which possess finite models*, Methods

**3**(1951), 140-149.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
03C13,
03C05,
03C60

Retrieve articles in all journals with MSC: 03C13, 03C05, 03C60

Additional Information

Keywords:
Universal sentence,
finite models,
residually finite,
finitely presented

Article copyright:
© Copyright 1984
American Mathematical Society