The theory of ordered abelian groups does not have the independence property
HTML articles powered by AMS MathViewer
- by Y. Gurevich and P. H. Schmitt
- Trans. Amer. Math. Soc. 284 (1984), 171-182
- DOI: https://doi.org/10.1090/S0002-9947-1984-0742419-0
- PDF | Request permission
Abstract:
We prove that no complete theory of ordered abelian groups has the independence property, thus answering a question by B. Poizat. The main tool is a result contained in the doctoral dissertation of Yuri Gurevich and also in P. H. Schmitt’s Elementary properties of ordered abelian groups, which basically transforms statements on ordered abelian groups into statements on coloured chains. We also prove that every $n$-type in the theory of coloured chains has at most ${2^n}$ coheirs, thereby strengthening a result by B. Poizat.References
- F. Delon, A counterexample concerning the number of coheirs, private communication by B. Poizat.
—, Types sur $C((X))$, Théories Stables, ${2^ \circ }$ année, IHP, Paris, 1981.
- Jean-Louis Duret, Les corps pseudo-finis ont la propriété d’indépendance, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 21, A981–A983 (French, with English summary). MR 584282
- S. Feferman and R. L. Vaught, The first order properties of products of algebraic systems, Fund. Math. 47 (1959), 57–103. MR 108455, DOI 10.4064/fm-47-1-57-103 Y. Gurevich, The decision problem for some algebraic theories, Doctoral Dissertation, Sverdlovsk, U.S.S.R., 1968. —, Elementary properties of ordered abelian groups, Trans. Amer. Math. Soc. 46 (1965), 165-192.
- Yuri Gurevich, Expanded theory of ordered abelian groups, Ann. Math. Logic 12 (1977), no. 2, 193–228. MR 498071, DOI 10.1016/0003-4843(77)90014-6
- H. Jerome Keisler, The stability function of a theory, J. Symbolic Logic 43 (1978), no. 3, 481–486. MR 503784, DOI 10.2307/2273523
- H. Jerome Keisler, Six classes of theories, J. Austral. Math. Soc. Ser. A 21 (1976), no. 3, 257–266. MR 409168, DOI 10.1017/s1446788700018541
- Daniel Lascar and Bruno Poizat, An introduction to forking, J. Symbolic Logic 44 (1979), no. 3, 330–350. MR 540665, DOI 10.2307/2273127 M. Parigot, Théories d’arbres, Doctoral Dissertation, Paris, 1981.
- Bruno Poizat, Théories instables, J. Symbolic Logic 46 (1981), no. 3, 513–522 (French). MR 627903, DOI 10.2307/2273753
- Matatyahu Rubin, Theories of linear order, Israel J. Math. 17 (1974), 392–443. MR 349377, DOI 10.1007/BF02757141 P. H. Schmitt, Model theory of ordered abelian groups, Habilitationsschrift, Heidelberg, 1982. —, Elementary properties of ordered abelian groups (to appear).
- Saharon Shelah, Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory, Ann. Math. Logic 3 (1971), no. 3, 271–362. MR 317926, DOI 10.1016/0003-4843(71)90015-5
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 284 (1984), 171-182
- MSC: Primary 03C60; Secondary 06F20
- DOI: https://doi.org/10.1090/S0002-9947-1984-0742419-0
- MathSciNet review: 742419