Moments of balanced measures on Julia sets
HTML articles powered by AMS MathViewer
- by M. F. Barnsley and A. N. Harrington
- Trans. Amer. Math. Soc. 284 (1984), 271-280
- DOI: https://doi.org/10.1090/S0002-9947-1984-0742425-6
- PDF | Request permission
Abstract:
By a theorem of S. Demko there exists a balanced measure on the Julia set of an arbitrary nonlinear rational transformation on the Riemann sphere. It is proved here that if the transformation admits an attractive or indifferent cycle, then there is a point with respect to which all the moments of a balanced measure exist; moreover, these moments can be calculated exactly. An explicit balanced measure is exhibited in an example where the Julia set is the whole sphere and for which the moments, with respect to any point, do not all exist.References
- Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197 N. I. Akhiezer, The classical moment problem, Hafner, New York, 1965.
- M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Orthogonal polynomials associated with invariant measures on Julia sets, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 381–384. MR 663789, DOI 10.1090/S0273-0979-1982-15043-1
- M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, On the invariant sets of a family of quadratic maps, Comm. Math. Phys. 88 (1983), no. 4, 479–501. MR 702565
- M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Infinite-dimensional Jacobi matrices associated with Julia sets, Proc. Amer. Math. Soc. 88 (1983), no. 4, 625–630. MR 702288, DOI 10.1090/S0002-9939-1983-0702288-6
- M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Geometry, electrostatic measure and orthogonal polynomials on Julia sets for polynomials, Ergodic Theory Dynam. Systems 3 (1983), no. 4, 509–520. MR 753919, DOI 10.1017/S0143385700002108 —, Geometrical and electrical properties of some Julia sets, Stat. Phys. (submitted).
- J. Béllissard, D. Bessis, and P. Moussa, Chaotic states of almost periodic Schrödinger operators, Phys. Rev. Lett. 49 (1982), no. 10, 701–704. MR 669364, DOI 10.1103/PhysRevLett.49.701
- Hans Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144 (1965). MR 194595, DOI 10.1007/BF02591353
- Paul F. Byrd and Morris D. Friedman, Handbook of elliptic integrals for engineers and physicists, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Band LXVII, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954. MR 0060642 S. G. Demko, On balanced measures, preprint.
- J.-P. Eckmann, Roads to turbulence in dissipative dynamical systems, Rev. Modern Phys. 53 (1981), no. 4, 643–654. MR 629208, DOI 10.1103/RevModPhys.53.643
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161–271 (French). MR 1504787
- Mitchell J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys. 19 (1978), no. 1, 25–52. MR 501179, DOI 10.1007/BF01020332
- Ricardo Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 27–43. MR 736567, DOI 10.1007/BF02584743
- Lisl Gaal, Classical Galois theory with examples, Markham Publishing Co., Chicago, Ill., 1971. MR 0280465
- Michael-R. Herman, Exemples de fractions rationnelles ayant une orbite dense sur la sphère de Riemann, Bull. Soc. Math. France 112 (1984), no. 1, 93–142 (French, with English summary). MR 771920 G. Julia, Memoire sur l’iteration des fonctions rationelles, J. Math. Pures Appl. 4 (1918), 47-245. S. Lattès, Sur l’iteration des substitutions rationelles et les fonctions de Poincaré, C. R. Acad. Sci. Paris 166 (1918), 26-28.
- Benoit B. Mandelbrot, Fractals: form, chance, and dimension, Revised edition, W. H. Freeman and Co., San Francisco, Calif., 1977. Translated from the French. MR 0471493
- John L. Gammel and George A. Baker Jr. (eds.), The Padé approximant in theoretical physics, Mathematics in Science and Engineering, Vol. 71, Academic Press, New York-London, 1970. MR 0449282
- Tom S. Pitcher and John R. Kinney, Some connections between ergodic theory and the iteration of polynomials, Ark. Mat. 8 (1969), 25–32. MR 263125, DOI 10.1007/BF02589532
- Dennis Sullivan, Itération des fonctions analytiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 9, 301–303 (French, with English summary). MR 658395
- H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Co., Inc., New York, N. Y., 1948. MR 0025596
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 284 (1984), 271-280
- MSC: Primary 30D05; Secondary 30E05, 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1984-0742425-6
- MathSciNet review: 742425