On the Weil-Petersson metric on Teichmüller space
HTML articles powered by AMS MathViewer
- by A. E. Fischer and A. J. Tromba
- Trans. Amer. Math. Soc. 284 (1984), 319-335
- DOI: https://doi.org/10.1090/S0002-9947-1984-0742427-X
- PDF | Request permission
Abstract:
Teichmüller space for a compact oriented surface $M$ without boundary is described as the quotient $\mathcal {A}/{\mathcal {D}_0}$, where $\mathcal {A}$ is the space of almost complex structures on $M$ (compatible with a given orientation) and ${\mathcal {D}_0}$ are those ${C^\infty }$ diffeomorphisms homotopic to the identity. There is a natural ${\mathcal {D}_0}$ invariant ${L_2}$ Riemannian structure on $\mathcal {A}$ which induces a Riemannian structure on $\mathcal {A}/{\mathcal {D}_0}$. Infinitesimally this is the bilinear pairing suggested by Andre Weil—the Weil-Petersson Riemannian structure. The structure is shown to be Kähler with respect to a naturally induced complex structure on $\mathcal {A}/{\mathcal {D}_0}$.References
- Lars V. Ahlfors, On quasiconformal mappings, J. Analyse Math. 3 (1954), 1–58; correction, 207–208. MR 64875, DOI 10.1007/BF02803585
- Lars V. Ahlfors, Some remarks on Teichmüller’s space of Riemann surfaces, Ann. of Math. (2) 74 (1961), 171–191. MR 204641, DOI 10.2307/1970309
- Lars V. Ahlfors, The complex analytic structure of the space of closed Riemann surfaces. , Analytic functions, Princeton Univ. Press, Princeton, N.J., 1960, pp. 45–66. MR 0124486
- Lars V. Ahlfors, Curvature properties of Teichmüller’s space, J. Analyse Math. 9 (1961/62), 161–176. MR 136730, DOI 10.1007/BF02795342
- M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Differential Geometry 3 (1969), 379–392. MR 266084, DOI 10.4310/jdg/1214429060
- Arthur E. Fischer and Jerrold E. Marsden, The manifold of conformally equivalent metrics, Canadian J. Math. 29 (1977), no. 1, 193–209. MR 445537, DOI 10.4153/CJM-1977-019-x
- Arthur E. Fischer and Anthony J. Tromba, On a purely “Riemannian” proof of the structure and dimension of the unramified moduli space of a compact Riemann surface, Math. Ann. 267 (1984), no. 3, 311–345. MR 738256, DOI 10.1007/BF01456093 —, Almost complex principal fibre bundles and the complex structure on Teichmüller space, SFB 72, preprint series, Bonn.; Crelle’s J. (to appear).
- Shoshichi Kobayashi, Intrinsic metrics on complex manifolds, Bull. Amer. Math. Soc. 73 (1967), 347–349. MR 210152, DOI 10.1090/S0002-9904-1967-11745-2
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- Hideki Omori, On the group of diffeomorphisms on a compact manifold, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 167–183. MR 0271983
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971, pp. 125–137. MR 0304694
- Oswald Teichmüller, Extremale quasikonforme Abbildungen und quadratische Differentiale, Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1939 (1940), no. 22, 197 (German). MR 0003242
- Joseph A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co., New York-London-Sydney, 1967. MR 0217740
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 284 (1984), 319-335
- MSC: Primary 32G15; Secondary 58B20
- DOI: https://doi.org/10.1090/S0002-9947-1984-0742427-X
- MathSciNet review: 742427