Liouville theorems, partial regularity and Hölder continuity of weak solutions to quasilinear elliptic systems
HTML articles powered by AMS MathViewer
- by Michael Meier
- Trans. Amer. Math. Soc. 284 (1984), 371-387
- DOI: https://doi.org/10.1090/S0002-9947-1984-0742430-X
- PDF | Request permission
Abstract:
This paper describes the connections between Liouville type theorems and interior regularity results for bounded weak solutions of quasilinear elliptic systems with quadratic growth. It is shown that equivalence does in general hold only in some restricted sense. A complete correspondence can be established in certain cases, e.g. for small solutions and for minima of quadratic variational integrals.References
- Jens Frehse, A discontinuous solution of a mildly nonlinear elliptic system, Math. Z. 134 (1973), 229–230. MR 344673, DOI 10.1007/BF01214096
- Jens Frehse, Essential selfadjointness of singular elliptic operators, Bol. Soc. Brasil. Mat. 8 (1977), no. 2, 87–107. MR 603282, DOI 10.1007/BF02584723 —, On two-dimensional quasi-linear elliptic systems, Manuscripta Math. 28 (1979), 21-49.
- Mariano Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. MR 717034
- Mariano Giaquinta and Enrico Giusti, Nonlinear elliptic systems with quadratic growth, Manuscripta Math. 24 (1978), no. 3, 323–349. MR 481490, DOI 10.1007/BF01167835
- Mariano Giaquinta and Enrico Giusti, On the regularity of the minima of variational integrals, Acta Math. 148 (1982), 31–46. MR 666107, DOI 10.1007/BF02392725 —, The singular set of the minima of quadratic functionals, Preprint no. 453, SFB 72, Bonn, 1981 (to appear).
- M. Giaquinta and J. Nečas, On the regularity of weak solutions to nonlinear elliptic systems of partial differential equations, J. Reine Angew. Math. 316 (1980), 140–159. MR 581329
- M. Giaquinta, J. Nečas, O. John, and J. Stará, On the regularity up to the boundary for second order nonlinear elliptic systems, Pacific J. Math. 99 (1982), no. 1, 1–17. MR 651482, DOI 10.2140/pjm.1982.99.1
- Stefan Hildebrandt and Kjell-Ove Widman, On the Hölder continuity of weak solutions of quasilinear elliptic systems of second order, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 1, 145–178. MR 457936
- Stefan Hildebrandt and Kjell-Ove Widman, Sätze vom Liouvilleschen Typ für quasilineare elliptische Gleichungen und Systeme, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 4 (1979), 41–59 (German). MR 568802
- Per-Anders Ivert, On quasilinear elliptic systems of diagonal form, Math. Z. 170 (1980), no. 3, 283–286. MR 564207, DOI 10.1007/BF01214867
- J. Jost and M. Meier, Boundary regularity for minima of certain quadratic functionals, Math. Ann. 262 (1983), no. 4, 549–561. MR 696525, DOI 10.1007/BF01456068
- B. Kawohl, On Liouville theorems, continuity and Hölder continuity of weak solutions to some quasilinear elliptic systems, Comment. Math. Univ. Carolin. 21 (1980), no. 4, 679–697. MR 597758
- P.-L. Lions, J. Nečas, and I. Netuka, A Liouville theorem for nonlinear elliptic systems with isotropic nonlinearities, Comment. Math. Univ. Carolin. 23 (1982), no. 4, 645–655. MR 687560
- Michael Meier, Liouville theorems for nonlinear elliptic equations and systems, Manuscripta Math. 29 (1979), no. 2-4, 207–228. MR 545042, DOI 10.1007/BF01303628
- Michael Meier, Liouville theorems for nondiagonal elliptic systems in arbitrary dimensions, Math. Z. 176 (1981), no. 1, 123–133. MR 606175, DOI 10.1007/BF01258908
- Norman G. Meyers and Alan Elcrat, Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions, Duke Math. J. 42 (1975), 121–136. MR 417568
- Michael Wiegner, On two-dimensional elliptic systems with a one-sided condition, Math. Z. 178 (1981), no. 4, 493–500. MR 638813, DOI 10.1007/BF01174770
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 284 (1984), 371-387
- MSC: Primary 35B65; Secondary 35D10, 35J60
- DOI: https://doi.org/10.1090/S0002-9947-1984-0742430-X
- MathSciNet review: 742430