Milnor’s invariants and the completions of link modules
HTML articles powered by AMS MathViewer
- by Lorenzo Traldi
- Trans. Amer. Math. Soc. 284 (1984), 401-424
- DOI: https://doi.org/10.1090/S0002-9947-1984-0742432-3
- PDF | Request permission
Abstract:
Let $L$ be a tame link of $\mu \geqslant 2$ components in ${S^3}$, $H$ the abelianization of its group ${\pi _1}({S^3} - L)$, and $IH$ the augmentation ideal of the integral group ring ${\mathbf {Z}}H$. The $IH$-adic completions of the Alexander module and Alexander invariant of $L$ are shown to possess presentation matrices whose entries are given in terms of certain integers $\mu ({i_1}, \ldots ,{i_q})$ introduced by J. Milnor. Various applications to the theory of the elementary ideals of these modules are given, including a condition on the Alexander polynomial necessary for the linking numbers of the components of $L$ with each other to all be zero. In the special case $\mu = 2$, it is shown that the various Milnor invariants $\bar \mu ([r + 1,s + 1])$ are determined (up to sign) by the Alexander polynomial of $L$, and that this Alexander polynomial is $0$ iff $\bar \mu ([r + 1,s + 1]) = 0$ for all $r,s \geqslant 0$ with $r + s$ even; also, the Chen groups of $L$ are determined (up to isomorphism) by those nonzero $\bar \mu ([r + 1,s + 1])$ with $r + s$ minimal. In contrast, it is shown by example that for $\mu \geqslant 3$ the Alexander polynomials of a link and its sublinks do not determine its Chen groups.References
- Nicolas Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972. Translated from the French. MR 0360549
- K.-T. Chen, R. H. Fox, and R. C. Lyndon, Free differential calculus. IV. The quotient groups of the lower central series, Ann. of Math. (2) 68 (1958), 81–95. MR 102539, DOI 10.2307/1970044
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014
- R. H. Crowell, The derived module of a homomorphism, Advances in Math. 6 (1971), 210–238 (1971). MR 276308, DOI 10.1016/0001-8708(71)90016-8
- R. H. Crowell, Torsion in link modules, J. Math. Mech. 14 (1965), 289–298. MR 0174606
- R. H. Crowell and D. Strauss, On the elementary ideals of link modules, Trans. Amer. Math. Soc. 142 (1969), 93–109. MR 247625, DOI 10.1090/S0002-9947-1969-0247625-1
- Ralph H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560. MR 53938, DOI 10.2307/1969736
- Ralph H. Fox, Free differential calculus. II. The isomorphism problem of groups, Ann. of Math. (2) 59 (1954), 196–210. MR 62125, DOI 10.2307/1969686
- Jonathan A. Hillman, Alexander ideals of links, Lecture Notes in Mathematics, vol. 895, Springer-Verlag, Berlin-New York, 1981. MR 653808, DOI 10.1007/BFb0091682
- Nathan Jacobson, Basic algebra. I, W. H. Freeman and Co., San Francisco, Calif., 1974. MR 0356989
- Mark E. Kidwell, On the Alexander polynomials of certain three-component links, Proc. Amer. Math. Soc. 71 (1978), no. 2, 351–354. MR 482737, DOI 10.1090/S0002-9939-1978-0482737-X
- W. S. Massey, Completion of link modules, Duke Math. J. 47 (1980), no. 2, 399–420. MR 575904, DOI 10.1215/S0012-7094-80-04724-9
- John Milnor, Link groups, Ann. of Math. (2) 59 (1954), 177–195. MR 71020, DOI 10.2307/1969685
- John Milnor, Isotopy of links, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 280–306. MR 0092150
- Kunio Murasugi, On Milnor’s invariant for links, Trans. Amer. Math. Soc. 124 (1966), 94–110. MR 198453, DOI 10.1090/S0002-9947-1966-0198453-4
- Kunio Murasugi, On Milnor’s invariant for links. II. The Chen group, Trans. Amer. Math. Soc. 148 (1970), 41–61. MR 259890, DOI 10.1090/S0002-9947-1970-0259890-3
- D. G. Northcott, Finite free resolutions, Cambridge Tracts in Mathematics, No. 71, Cambridge University Press, Cambridge-New York-Melbourne, 1976. MR 0460383, DOI 10.1017/CBO9780511565892
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- N. Smythe, Isotopy invariants of links and the Alexander matrix, Amer. J. Math. 89 (1967), 693–704. MR 219056, DOI 10.2307/2373240
- Guillermo Torres, On the Alexander polynomial, Ann. of Math. (2) 57 (1953), 57–89. MR 52104, DOI 10.2307/1969726
- Lorenzo Traldi, The determinantal ideals of link modules. I, Pacific J. Math. 101 (1982), no. 1, 215–222. MR 671854, DOI 10.2140/pjm.1982.101.215
- Lorenzo Traldi, Linking numbers and the elementary ideals of links, Trans. Amer. Math. Soc. 275 (1983), no. 1, 309–318. MR 678352, DOI 10.1090/S0002-9947-1983-0678352-1 —, Some properties of the determinantal ideals of link modules, Kobe J. Math, (to appear).
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 284 (1984), 401-424
- MSC: Primary 57M05; Secondary 57M25
- DOI: https://doi.org/10.1090/S0002-9947-1984-0742432-3
- MathSciNet review: 742432