An interface tracking algorithm for the porous medium equation
HTML articles powered by AMS MathViewer
- by E. DiBenedetto and David Hoff
- Trans. Amer. Math. Soc. 284 (1984), 463-500
- DOI: https://doi.org/10.1090/S0002-9947-1984-0743729-3
- PDF | Request permission
Abstract:
We study the convergence of a finite difference scheme for the Cauchy problem for the porous medium equation ${u_t} = {({u^m})_{x x}},m > 1$. The scheme exhibits the following two features. The first is that it employs a discretization of the known interface condition for the propagation of the support of the solution. We thus generate approximate interfaces as well as an approximate solution. The second feature is that it contains a vanishing viscosity term. This term permits an estimate of the form $\parallel {({u^{m - 1}})_{x x}}\;\parallel _{1,{\mathbf {R}}} \leqslant c/t$. We prove that both the approximate solution and the approximate interfaces converge to the correct ones. Finally error bounds for both solution and free boundaries are proved in terms of the mesh parameters.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- D. G. Aronson, Regularity propeties of flows through porous media, SIAM J. Appl. Math. 17 (1969), 461–467. MR 247303, DOI 10.1137/0117045
- D. G. Aronson, Regularity properties of flows through porous media: The interface, Arch. Rational Mech. Anal. 37 (1970), 1–10. MR 255996, DOI 10.1007/BF00249496
- D. G. Aronson, Regularity properties of flows through porous media: A counterexample, SIAM J. Appl. Math. 19 (1970), 299–307. MR 265774, DOI 10.1137/0119027
- Donald G. Aronson and Philippe Bénilan, Régularité des solutions de l’équation des milieux poreux dans $\textbf {R}^{N}$, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 2, A103–A105 (French, with English summary). MR 524760
- G. I. Barenblatt, On some unsteady motions of a liquid and gas in a porous medium, Akad. Nauk SSSR. Prikl. Mat. Meh. 16 (1952), 67–78 (Russian). MR 0046217
- A. Fasano and M. Primicerio, Convergence of Huber’s method for heat conduction problems with change of phase, Z. Angew. Math. Mech. 53 (1973), no. 6, 341–348 (English, with German and Russian summaries). MR 400930, DOI 10.1002/zamm.19730530508
- B. H. Gilding, Hölder continuity of solutions of parabolic equations, J. London Math. Soc. (2) 13 (1976), no. 1, 103–106. MR 399658, DOI 10.1112/jlms/s2-13.1.103
- J. L. Graveleau and P. Jamet, A finite difference approach to some degenerate nonlinear parabolic equations, SIAM J. Appl. Math. 20 (1971), 199–223. MR 290600, DOI 10.1137/0120027 A. Hüber, Hauptaufsätze über das Fortschreiten der Schmelzgrenze in einem linearen Leiter, Z. Angew. Math. Mech. 19 (1939), 1-21.
- Barry F. Knerr, The porous medium equation in one dimension, Trans. Amer. Math. Soc. 234 (1977), no. 2, 381–415. MR 492856, DOI 10.1090/S0002-9947-1977-0492856-3
- S. N. Kružkov, Results on the nature of the continuity of solutions of parabolic equations, and certain applications thereof, Mat. Zametki 6 (1969), 97–108 (Russian). MR 249832
- Kenji Tomoeda and Masayasu Mimura, Numerical approximations to interface curves for a porous media equation, Hiroshima Math. J. 13 (1983), no. 2, 273–294. MR 707183
- George J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341–346. MR 169064
- O. A. Oleĭnik, A. S. Kalašinkov, and Yuĭ-Lin′Čžou, The Cauchy problem and boundary problems for equations of the type of non-stationary filtration, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 667–704 (Russian). MR 0099834
- R. E. Pattle, Diffusion from an instantaneous point source with a concentration-dependent coefficient, Quart. J. Mech. Appl. Math. 12 (1959), 407–409. MR 114505, DOI 10.1093/qjmam/12.4.407
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 284 (1984), 463-500
- MSC: Primary 65M10; Secondary 35K55, 35Q20, 35R35, 76S05
- DOI: https://doi.org/10.1090/S0002-9947-1984-0743729-3
- MathSciNet review: 743729