Fine and parabolic limits for solutions of second-order linear parabolic equations on an infinite slab
HTML articles powered by AMS MathViewer
- by B. A. Mair
- Trans. Amer. Math. Soc. 284 (1984), 583-599
- DOI: https://doi.org/10.1090/S0002-9947-1984-0743734-7
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 291 (1985), 381.
Abstract:
This paper investigates the boundary behaviour of positive solutions of the equation $Lu = 0$, where $L$ is a uniformly parabolic second-order differential operator in divergence form having Hölder-continuous coefficients on $X = {{\mathbf {R}}^n} \times (0,T)$, where $0 < T < \infty$. In particular, the notion of semithinness for the potential theory on $X$ associated with $L$ is introduced, and the relationships between fine, semifine and parabolic convergence at points of ${{\mathbf {R}}^n} \times \{ 0 \}$ are studied. The abstract Fatou-Naim-Doob theorem is used to deduce that every positive solution of $Lu = 0$ on $X$ has parabolic limits Lebesgue-almost-everywhere on ${{\mathbf {R}}^n} \times \{ 0 \}$. Furthermore, a Carleson-type result is obtained for solutions defined on a union of parabolic regions.References
- D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967), 890–896. MR 217444, DOI 10.1090/S0002-9904-1967-11830-5
- D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 607–694. MR 435594
- Heinz Bauer, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Mathematics, No. 22, Springer-Verlag, Berlin-New York, 1966 (German). Ausarbeitung einer im Sommersemester 1965 an der Universität Hamburg gehaltenen Vorlesung. MR 0210916 N. Bourbaki, General topology, Part 2, Addison-Wesley, Reading, Mass., 1966.
- Marcel Brelot, On topologies and boundaries in potential theory, Lecture Notes in Mathematics, Vol. 175, Springer-Verlag, Berlin-New York, 1971. Enlarged edition of a course of lectures delivered in 1966. MR 0281940
- M. Brelot and J. L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 395–415 (French). MR 196107
- A. P. Calderón, On the behaviour of harmonic functions at the boundary, Trans. Amer. Math. Soc. 68 (1950), 47–54. MR 32863, DOI 10.1090/S0002-9947-1950-0032863-9
- Lennart Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393–399 (1962). MR 159013, DOI 10.1007/BF02591620
- Kai Lai Chung, A course in probability theory, 2nd ed., Probability and Mathematical Statistics, Vol. 21, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0346858
- Corneliu Constantinescu and Aurel Cornea, Potential theory on harmonic spaces, Die Grundlehren der mathematischen Wissenschaften, Band 158, Springer-Verlag, New York-Heidelberg, 1972. With a preface by H. Bauer. MR 0419799
- J. L. Doob, Relative limit theorems in analysis, J. Analyse Math. 8 (1960/61), 289–306. MR 125974, DOI 10.1007/BF02786853
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Kohur Gowrisankaran, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 307–356. MR 164051
- Kohur Gowrisankaran, Extreme harmonic functions and boundary value problems. II, Math. Z. 94 (1966), 256–270. MR 201660, DOI 10.1007/BF01111455
- Siegfried Guber, On the potential theory of linear, homogeneous parabolic partial differential equations of second order, Symposium on Probability Methods in Analysis (Loutraki, 1966) Springer, Berlin, 1967, pp. 112–117. MR 0223596
- J. R. Hattemer, Boundary behavior of temperatures. I, Studia Math. 25 (1964/65), 111–155. MR 181838, DOI 10.4064/sm-25-1-111-155
- Richard A. Hunt and Richard L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507–527. MR 274787, DOI 10.1090/S0002-9947-1970-0274787-0
- Klaus Janssen, Martin boundary and ${\cal H}^{p}$-theory of harmonic spaces, Seminar on Potential Theory, II, Lecture Notes in Math., Vol. 226, Springer, Berlin, 1971, pp. 102–151. MR 0393528
- Raymond Johnson, Representation theorems and Fatou theorems for second-order linear parabolic partial differential equations, Proc. London Math. Soc. (3) 23 (1971), 325–347. MR 289949, DOI 10.1112/plms/s3-23.2.325
- John T. Kemper, Temperatures in several variables: Kernel functions, representations, and parabolic boundary values, Trans. Amer. Math. Soc. 167 (1972), 243–262. MR 294903, DOI 10.1090/S0002-9947-1972-0294903-6
- Adam Korányi and J. C. Taylor, Fine convergence and admissible convergence for symmetric spaces of rank one, Trans. Amer. Math. Soc. 263 (1981), no. 1, 169–181. MR 590418, DOI 10.1090/S0002-9947-1981-0590418-1
- Adam Korányi and J. C. Taylor, Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation, Illinois J. Math. 27 (1983), no. 1, 77–93. MR 684542 L. Nairn, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183-281.
- Louis Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math. 6 (1953), 167–177. MR 55544, DOI 10.1002/cpa.3160060202
- Daniel Resch, Temperature bounds on the infinite rod, Proc. Amer. Math. Soc. 3 (1952), 632–634. MR 49434, DOI 10.1090/S0002-9939-1952-0049434-8
- J. C. Taylor, An elementary proof of the theorem of Fatou-Naïm-Doob, 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980) CMS Conf. Proc., vol. 1, Amer. Math. Soc., Providence, R.I., 1981, pp. 153–163. MR 670103
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 284 (1984), 583-599
- MSC: Primary 35K10; Secondary 31B25
- DOI: https://doi.org/10.1090/S0002-9947-1984-0743734-7
- MathSciNet review: 743734