Representations of compact groups on Banach algebras
HTML articles powered by AMS MathViewer
- by David Gurarie
- Trans. Amer. Math. Soc. 285 (1984), 1-55
- DOI: https://doi.org/10.1090/S0002-9947-1984-0748829-X
- PDF | Request permission
Abstract:
Let a compact group $U$ act by automorphisms of a commutative regular and Wiener Banach algebra $\mathcal {A}$. We study representations ${R^\omega }$ of $U$ on quotient spaces $\mathcal {A}/I(\omega )$, where $\omega$ is an orbit of $U$ in the Gelfand space $X$ of $\mathcal {A}$ and $I(\omega )$ is the minimal closed ideal with hull $\omega \subset X$. The main result of the paper is: if $\mathcal {A} = {\mathcal {A}_\rho }(X)$ is a weighted Fourier algebra on a LCA group $X = \hat A$ with a subpolynomial weight $\rho$ on $A$, and $U$ acts by affine transformations on $X$, then for any orbit $\omega \subset X$ the representation ${R^\omega }$ has finite multiplicity. Precisely, the multiplicity of $\pi \in \hat U$ in ${R^\omega }$ is estimated as $k(\pi ;{R^\omega }) \leq c \cdot \deg (\pi )\;\forall \pi \in \hat U$ with a constant $c$ depending on $A$ and $\rho$. Applications of this result are given to topologically irreducible representations of motion groups and primary ideals of invariant subalgebras.References
- Robert C. Busby and Harvey A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503–537. MR 264418, DOI 10.1090/S0002-9947-1970-0264418-8
- Yngve Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1–66. MR 78666, DOI 10.1007/BF02392357
- Yngve Domar, On the spectral synthesis problem for $(n-1)$-dimensional subsets of $\textbf {R}^{n},\,n\geq 2$, Ark. Mat. 9 (1971), 23–37. MR 324319, DOI 10.1007/BF02383635
- J. M. G. Fell, Non-unitary dual spaces of groups, Acta Math. 114 (1965), 267–310. MR 186754, DOI 10.1007/BF02391824 —, Induced representations and Banach $^{\ast }$-algebraic bundles, Lecture Notes in Math., vol. 582, Springer-Verlag, Berlin and New York, 1977.
- I. Gelfand, D. Raikov, and G. Shilov, Commutative normed rings, Chelsea Publishing Co., New York, 1964. Translated from the Russian, with a supplementary chapter. MR 0205105
- Roger Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496–556. MR 52444, DOI 10.1090/S0002-9947-1952-0052444-2
- Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1–40. MR 284541, DOI 10.1515/crll.1971.246.1
- David Gurarie, Harmonic analysis based on crossed product algebras and motion groups, Harmonic analysis, Iraklion 1978 (Proc. Conf., Univ. Crete, Iraklion, 1978), Lecture Notes in Math., vol. 781, Springer, Berlin, 1980, pp. 59–75. MR 571499
- David Gurarie, Burnside type theorems for Banach representations of motion groups and algebras, 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980) CMS Conf. Proc., vol. 1, Amer. Math. Soc., Providence, R.I., 1981, pp. 213–243. MR 670107
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773 W. Kirsch and D. Müller, Zum Synthese problem für Bahnen Lie Scher Gruppen in ${{\mathbf {R}}^n}$, preprint, 1979.
- H. Leptin, Verallgemeinerte $L^{1}$-Algebren und projektive Darstellungen lokal kompakter Gruppen. I, II, Invent. Math. 3 (1967), 257–281; ibid. 4 (1967), 68–86 (German). MR 229754, DOI 10.1007/BF01402952
- Horst Leptin, On one-sided harmonic analysis in noncommutative locally compact groups, J. Reine Angew. Math. 306 (1979), 122–153. MR 524651, DOI 10.1515/crll.1979.306.122
- John Liukkonen and Richard Mosak, Harmonic analysis and centers of Beurling algebras, Comment. Math. Helv. 52 (1977), no. 3, 297–315. MR 470611, DOI 10.1007/BF02567370
- B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR 0212575
- Calvin C. Moore, On the Frobenius reciprocity theorem for locally compact groups, Pacific J. Math. 12 (1962), 359–365. MR 141737, DOI 10.2140/pjm.1962.12.359
- Richard D. Mosak, Ditkin’s condition and primary ideals in central Beurling algebras, Monatsh. Math. 85 (1978), no. 2, 115–124. MR 621699, DOI 10.1007/BF01297541 L. C. Pontrjagin, Continuous groups, English transl., Gordon & Breach, New York, 1966.
- H. Reiter, Contributions to harmonic analysis, Acta Math. 96 (1956), 253–263. MR 87031, DOI 10.1007/BF02392363
- Marc A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443–491. MR 0223496, DOI 10.1016/0022-1236(67)90012-2
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834 Séminaire "Sophus Lie" de L’Ecole Normale Supérieure 1954/55, Théorie des algèbres de Lie. Topologie des groupes de Lie, Secrétariat Math., Paris, 1955.
- N. Th. Varopoulos, Spectral synthesis on spheres, Proc. Cambridge Philos. Soc. 62 (1966), 379–387. MR 201908, DOI 10.1017/s0305004100039967
- Nolan R. Wallach, Harmonic analysis on homogeneous spaces, Pure and Applied Mathematics, No. 19, Marcel Dekker, Inc., New York, 1973. MR 0498996
- Hassler Whitney, On ideals of differentiable functions, Amer. J. Math. 70 (1948), 635–658. MR 26238, DOI 10.2307/2372203
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 285 (1984), 1-55
- MSC: Primary 22C05; Secondary 22D20, 43A20, 46J99
- DOI: https://doi.org/10.1090/S0002-9947-1984-0748829-X
- MathSciNet review: 748829