Convergence of multivariate polynomials interpolating on a triangular array
HTML articles powered by AMS MathViewer
- by T. N. T. Goodman and A. Sharma
- Trans. Amer. Math. Soc. 285 (1984), 141-157
- DOI: https://doi.org/10.1090/S0002-9947-1984-0748835-5
- PDF | Request permission
Abstract:
Given a triangular array of complex numbers, it is well known that for any function $f$ smooth enough, there is a unique polynomial ${G_n}f$ of degree $\leq n$ such that on each of the first $n + 1$ rows of the array the divided difference of ${G_n}f$ coincides with that of $f$. This result has recently been generalized to give a unique polynomial ${\mathcal {G}_n}f$ in $k$ variables $(k > 1)$ of total degree $\leq n$ which interpolates a given function $f$ on a triangular array in ${C^k}$. In this paper we extend some results of A. O. Gelfond and derive formulas for ${\mathcal {G}_n}f$ and $f - {\mathcal {G}_n}f$ to prove some results on convergence of ${\mathcal {G}_n}f$ to $f$ as $n \to \infty$ under various conditions on $f$ and on the triangular array.References
- Thomas Bloom, Kergin interpolation of entire functions on $\textbf {C}^{n}$, Duke Math. J. 48 (1981), no. 1, 69–83. MR 610176
- Alfred S. Cavaretta Jr., Charles A. Micchelli, and Ambikeshwar Sharma, Multivariate interpolation and the Radon transform, Math. Z. 174 (1980), no. 3, 263–279. MR 593824, DOI 10.1007/BF01161414
- A. O. Guelfond, Calcul des différences finies, Collection Universitaire de Mathématiques, XII, Dunod, Paris, 1963 (French). Traduit par G. Rideau. MR 0157139
- Paul Kergin, A natural interpolation of $C^{K}$ functions, J. Approx. Theory 29 (1980), no. 4, 278–293. MR 598722, DOI 10.1016/0021-9045(80)90116-1
- Charles A. Micchelli, A constructive approach to Kergin interpolation in $\textbf {R}^{k}$: multivariate $B$-splines and Lagrange interpolation, Rocky Mountain J. Math. 10 (1980), no. 3, 485–497. MR 590212, DOI 10.1216/RMJ-1980-10-3-485 E. Stein, Boundary values of holomorphic functions of several complex variables, Math. Notes, Princeton Univ. Press, Princeton, N.J.
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 285 (1984), 141-157
- MSC: Primary 41A05; Secondary 30E05
- DOI: https://doi.org/10.1090/S0002-9947-1984-0748835-5
- MathSciNet review: 748835