Extremal problems for polynomials with exponential weights
HTML articles powered by AMS MathViewer
- by H. N. Mhaskar and E. B. Saff
- Trans. Amer. Math. Soc. 285 (1984), 203-234
- DOI: https://doi.org/10.1090/S0002-9947-1984-0748838-0
- PDF | Request permission
Abstract:
For the extremal problem: \[ {E_{n,r}}(\alpha ): = \min \parallel \exp ( - |x{|^\alpha }) ({x^n} + \cdots ){\parallel _{{L^r}}}, \qquad \alpha > 0,\] where ${L^r} (0 < r \leqslant \infty )$ denotes the usual integral norm over ${\mathbf {R}}$, and the minimum is taken over all monic polynomials of degree $n$, we describe the asymptotic form of the error ${E_{n,r}}(\alpha )\;({\text {as}}\;n \to \infty )$ as well as the limiting distribution of the zeros of the corresponding extremal polynomials. The case $r = 2$ yields new information regarding the polynomials $\{ {p_n}(\alpha ;x) = {\gamma _n}(\alpha ) {x^n} + \cdots \}$ which are orthonormal on ${\mathbf {R}}$ with respect to $\exp ( - 2|x{|^\alpha })$. In particular, it is shown that a conjecture of Freud concerning the leading coefficients ${\gamma _n}(\alpha )$ is true in a Cesàro sense. Furthermore a contracted zero distribution theorem is proved which, unlike a previous result of Ullman, does not require the truth of the Freud’s conjecture. For $r = \infty ,\alpha > 0$ we also prove that, if $\deg {P_n}(x) \leqslant n$, the norm $\parallel \exp ( - |x|^{\alpha }) {P_n}(x)\parallel _{{L^\infty }}$ is attained on the finite interval \[ \left [ { - {{(n/{\lambda _\alpha })}^{1/\alpha }},{{(n/{\lambda _\alpha })}^{1/\alpha }}} \right ],\quad {\text {where}}\;{\lambda _\alpha } = \Gamma (\alpha )/{2^{\alpha - 2}}{\{ \Gamma (\alpha /2)\} ^2}.\] Extensions of Nikolskii-type inequalities are also given.References
- Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197 A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, Vol. I, McGraw-Hill, New York, 1953.
- Paul Erdös and Paul Turán, On the uniformly-dense distribution of certain sequences of points, Ann. of Math. (2) 41 (1940), 162–173. MR 1319, DOI 10.2307/1968824 G. Freud, Orthogonal polynomials, Pergamon Press, London, 1971.
- G. Freud, On two polynomial inequalities. I, Acta Math. Acad. Sci. Hungar. 22 (1971/72), 109–116. MR 288221, DOI 10.1007/BF01895997
- Géza Freud, On the greatest zero of an orthogonal polynomial. II, Acta Sci. Math. (Szeged) 36 (1974), 49–54. MR 346406
- G. Freud, On estimations of the greatest zeroes of orthogonal polynomials, Acta Math. Acad. Sci. Hungar. 25 (1974), 99–107. MR 370043, DOI 10.1007/BF01901752
- Géza Freud, On polynomial approximation with respect to general weights, Functional analysis and its applications (Internat. Conf., Eleventh Anniversary of Matscience, Madras, 1973; dedicated to Alladi Ramakrishnan), Lecture Notes in Math., Vol. 399, Springer, Berlin, 1974, pp. 149–179. MR 0404924
- Géza Freud, On the coefficients in the recursion formulae of orthogonal polynomials, Proc. Roy. Irish Acad. Sect. A 76 (1976), no. 1, 1–6. MR 419895 —, On the greatest zero of an orthogonal polynomial (preprint), Abstract 753-B36, Notices Amer. Math. Soc. 25 (1978).
- G. Freud, A. Giroux, and Q. I. Rahman, Sur l’approximation polynomiale avec poids $\textrm {exp}(-\mid x\mid )$, Canadian J. Math. 30 (1978), no. 2, 358–372 (French). MR 467115, DOI 10.4153/CJM-1978-032-7
- John Garnett, Analytic capacity and measure, Lecture Notes in Mathematics, Vol. 297, Springer-Verlag, Berlin-New York, 1972. MR 0454006
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027
- G. G. Lorentz, Approximation by incomplete polynomials (problems and results), Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 289–302. MR 0467089
- A. I. Markushevich, Theory of functions of a complex variable. Vol. III, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. Revised English edition, translated and edited by Richard A. Silverman. MR 0215964
- H. N. Mhaskar, Weighted polynomial approximation of entire functions. I, J. Approx. Theory 35 (1982), no. 3, 203–213. MR 663666, DOI 10.1016/0021-9045(82)90002-8
- H. N. Mhaskar, Weighted polynomial approximation of entire functions. I, J. Approx. Theory 35 (1982), no. 3, 203–213. MR 663666, DOI 10.1016/0021-9045(82)90002-8
- H. N. Mhaskar, Weighted analogues of Nikol′skiĭ-type inequalities and their applications, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 783–801. MR 730109 —, On the convergence of expansions in polynomials orthogonal with respect to general weight functions on the whole real line, Acta Math. Acad. Sci. Hungar. (to appear).
- G. P. Névai, Polynomials that are orthogonal on the real axis with weight $x^{\alpha }e^{-x^{\beta }}$. I, Acta Math. Acad. Sci. Hungar. 24 (1973), 335–342 (Russian). MR 330559, DOI 10.1007/BF01958044
- Paul G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213, v+185. MR 519926, DOI 10.1090/memo/0213 —, Orthogonal polynomials associated with $\exp ( - {x^4})$, CMS Conference Proceedings, Vol. 3 (Second Edmonton Conference on Approximation Theory), Amer. Math. Soc., Providence, R.I., 1982, pp. 263-285.
- S. M. Nikol′skiĭ, Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables, Trudy Mat. Inst. Steklov. 38 (1951), 244–278 (Russian). MR 0048565
- S. M. Nikol′skiĭ, Approximation of functions of several variables and imbedding theorems, Die Grundlehren der mathematischen Wissenschaften, Band 205, Springer-Verlag, New York-Heidelberg, 1975. Translated from the Russian by John M. Danskin, Jr. MR 0374877 G. Pòlya and G. Szegö, Über den transfiniten Durchmesser (Kapäzitatskonstante) von ebenen und räumlichen Punktmengen, J. Reine Angew. Math. 165 (1931), 4-49.
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
- E. B. Saff, J. L. Ullman, and R. S. Varga, Incomplete polynomials: an electrostatics approach, Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), Academic Press, New York-London, 1980, pp. 769–782. MR 602801
- E. B. Saff and R. S. Varga, On incomplete polynomials. II, Pacific J. Math. 92 (1981), no. 1, 161–172. MR 618054 G. Szegö, Orthogonal polynomials (3rd ed.), Amer. Math. Soc Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1967.
- A. F. Timan, Theory of approximation of functions of a real variable, A Pergamon Press Book, The Macmillan Company, New York, 1963. Translated from the Russian by J. Berry; English translation edited and editorial preface by J. Cossar. MR 0192238
- J. L. Ullman, On the regular behaviour of orthogonal polynomials, Proc. London Math. Soc. (3) 24 (1972), 119–148. MR 291718, DOI 10.1112/plms/s3-24.1.119
- J. L. Ullman, Orthogonal polynomials associated with an infinite interval, Michigan Math. J. 27 (1980), no. 3, 353–363. MR 584699
- Joseph L. Ullman, On orthogonal polynomials associated with the infinite interval, Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), Academic Press, New York-London, 1980, pp. 889–895. MR 602816
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 285 (1984), 203-234
- MSC: Primary 41A17; Secondary 42C05
- DOI: https://doi.org/10.1090/S0002-9947-1984-0748838-0
- MathSciNet review: 748838