The theory of -supermanifolds
Authors:
Charles P. Boyer and Samuel Gitler
Journal:
Trans. Amer. Math. Soc. 285 (1984), 241-267
MSC:
Primary 58A50; Secondary 53C99, 58C50, 81G20, 83E50
DOI:
https://doi.org/10.1090/S0002-9947-1984-0748840-9
MathSciNet review:
748840
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A theory of supermanifolds is developed in which a supermanifold is an ordinary manifold associated with a certain integrable second order -structure. A structure theorem is proved showing that every
-supermanifold has a complete distributive lattice of foliations with flat affine leaves. Furthermore, an existence and uniqueness theorem for local flows of
vector fields is proved.
- [1] Marjorie Batchelor, The structure of supermanifolds, Trans. Amer. Math. Soc. 253 (1979), 329–338. MR 536951, https://doi.org/10.1090/S0002-9947-1979-0536951-0
- [2] Marjorie Batchelor, Two approaches to supermanifolds, Trans. Amer. Math. Soc. 258 (1980), no. 1, 257–270. MR 554332, https://doi.org/10.1090/S0002-9947-1980-0554332-9
- [3] F. A. Berezin, The method of second quantization, Translated from the Russian by Nobumichi Mugibayashi and Alan Jeffrey. Pure and Applied Physics, Vol. 24, Academic Press, New York-London, 1966. MR 0208930
- [4] F. A. Berezin and G. I. Kac, Lie groups with commuting and anticommuting parameters, Mat. Sb. (N.S.) 82 (124) (1970), 343–359 (Russian). MR 0265520
- [5] F. A. Berezin and D. A. Leĭtes, Supermanifolds, Dokl. Akad. Nauk SSSR 224 (1975), no. 3, 505–508 (Russian). MR 0402795
- [6]
C. P. Boyer and S. Gitler, The theory of
-supermanifolds, Group Theoretical Methods in Physics (K. B. Wolf., Ed.), Lecture Notes in Physics, vol. 135, Springer-Verlag, New York 1980, pp. 532-536.
- [7] C. P. Boyer, On the structure of supermanifolds, Symposium on Algebraic Topology in Honor of José Adem (S. Girier, Ed.), Contemp. Math., vol. 12, Amer. Math. Soc., Providence, R. I., 1982, pp. 53-59.
- [8] B. DeWitt, Differential supergeometry (unpublished manuscript).
- [9] K. Kodaira and D. C. Spencer, Multifoliate structures, Ann. of Math. (2) 74 (1961), 52–100. MR 148086, https://doi.org/10.2307/1970306
- [10] Bertram Kostant, Graded manifolds, graded Lie theory, and prequantization, Differential geometrical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975) Springer, Berlin, 1977, pp. 177–306. Lecture Notes in Math., Vol. 570. MR 0580292
- [11] D. A. Leĭtes, Introduction to the theory of supermanifolds, Uspekhi Mat. Nauk 35 (1980), no. 1(211), 3–57, 255 (Russian). MR 565567
- [12] Pierre Molino, Théorie des 𝐺-structures: le problème d’équivalence, Lecture Notes in Mathematics, Vol. 588, Springer-Verlag, Berlin-New York, 1977 (French). Notes rédigées avec la collaboration de F. Toupine. MR 0517117
- [13] Georges Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Ind., no. 1183, Hermann & Cie., Paris, 1952 (French). Publ. Inst. Math. Univ. Strasbourg 11, pp. 5–89, 155–156. MR 0055692
- [14] V. Rittenberg and M. Scheunert, Elementary construction of graded Lie groups, J. Mathematical Phys. 19 (1978), no. 3, 709–713. MR 466429, https://doi.org/10.1063/1.523689
- [15] Alice Rogers, A global theory of supermanifolds, J. Math. Phys. 21 (1980), no. 6, 1352–1365. MR 574696, https://doi.org/10.1063/1.524585
- [16] V. N. Šander, Vector fields and differential equations on supermanifolds, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 91–92 (Russian). MR 575229
Retrieve articles in Transactions of the American Mathematical Society with MSC: 58A50, 53C99, 58C50, 81G20, 83E50
Retrieve articles in all journals with MSC: 58A50, 53C99, 58C50, 81G20, 83E50
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1984-0748840-9
Keywords:
Almost supermanifolds,
exterior algebra,
foliations,
pseudogroups,
supereuclidean space,
supermanifolds
Article copyright:
© Copyright 1984
American Mathematical Society