On the structure of real transitive Lie algebras
HTML articles powered by AMS MathViewer
- by Jack F. Conn
- Trans. Amer. Math. Soc. 286 (1984), 1-71
- DOI: https://doi.org/10.1090/S0002-9947-1984-0756031-0
- PDF | Request permission
Abstract:
In this paper, we examine some of the ways in which abstract algebraic objects in a transitive Lie algebra $L$ are expressed geometrically in the action of each transitive Lie pseudogroup $\Gamma$ associated to $L$. We relate those chain decompositions of $\Gamma$ which result from considering $\Gamma$-invariant foliations to Jordan-Hölder sequences (in the sense of Cartan and Guillemin) for $L$. Local coordinates are constructed which display the nature of the partial differential equations defining $\Gamma$; in particular, locally homogeneous pseudocomplex structures (also called ${\text {CR}}$-structures) are associated to the nonabelian quotients of complex type in a Jordan-Hölder sequence for $L$.References
- N. Bourbaki, Élements de mathématique, algèbre, Hermann, Paris, 1958.
—, Élements de mathématique, algèbre commutative, Hermann, Paris, 1958.
- Elie Cartan, Les groupes de transformations continus, infinis, simples, Ann. Sci. École Norm. Sup. (3) 26 (1909), 93–161 (French). MR 1509105
- Jack F. Conn, A new class of counterexamples to the integrability problem, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 7, 2655–2658. MR 464334, DOI 10.1073/pnas.74.7.2655
- Jack F. Conn, Nonabelian minimal closed ideals of transitive Lie algebras, Mathematical Notes, vol. 25, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 595686
- Charles Freifeld, The cohomology of transitive filtered modules. I. The first cohomology group, Trans. Amer. Math. Soc. 144 (1969), 475–491. MR 283818, DOI 10.1090/S0002-9947-1969-0283818-5
- Hubert Goldschmidt, Sur la structure des équations de Lie. I. Le troisième théorème fondamental, J. Differential Geometry 6 (1971/72), 357–373 (French). MR 301768
- Hubert Goldschmidt, The integrability problem for Lie equations, Bull. Amer. Math. Soc. 84 (1978), no. 4, 531–546. MR 517116, DOI 10.1090/S0002-9904-1978-14492-9
- Hubert Goldschmidt, On the nonlinear cohomology of Lie equations. V, J. Differential Geometry 16 (1981), no. 4, 595–674 (1982). MR 661657
- Hubert Goldschmidt and Donald Spencer, On the non-linear cohomology of Lie equations. I, Acta Math. 136 (1976), no. 1-2, 103–170. MR 445566, DOI 10.1007/BF02392044
- Martin Golubitsky, Primitive actions and maximal subgroups of Lie groups, J. Differential Geometry 7 (1972), 175–191. MR 327855
- Victor Guillemin, A Jordan-Hölder decomposition for a certain class of infinite dimensional Lie algebras, J. Differential Geometry 2 (1968), 313–345. MR 263882
- Victor Guillemin, Infinite dimensional primitive Lie algebras, J. Differential Geometry 4 (1970), 257–282. MR 268233 —, Representations of Lie algebras as derivations of formal power series rings, 1969, unpublished.
- Victor W. Guillemin and Shlomo Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16–47. MR 170295, DOI 10.1090/S0002-9904-1964-11019-3
- Nagayoshi Iwahori, On real irreducible representations of Lie algebras, Nagoya Math. J. 14 (1959), 59–83. MR 102534
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793 G. Köthe, Topologische lineare räume. I, Springer-Verlag, Berlin. 1966.
- V. V. Morosoff, Sur les groupes primitifs, Rec. Math. N.S. [Mat. Sbornik] 5(47) (1939), 355–390 (Russian, with French summary). MR 0001557 L. Nirenberg, A complex Frobenius theorem, Seminar on Analytic Functions, Institute for Advanced Study 1 (1957), 172-179.
- D. S. Rim, Deformation of transitive Lie algebras, Ann. of Math. (2) 83 (1966), 339–357. MR 199315, DOI 10.2307/1970435
- Steve Shnider, The classification of real primitive infinite Lie algebras, J. Differential Geometry 4 (1970), 81–89. MR 285574
- I. M. Singer and Shlomo Sternberg, The infinite groups of Lie and Cartan. I. The transitive groups, J. Analyse Math. 15 (1965), 1–114. MR 217822, DOI 10.1007/BF02787690
- D. C. Spencer, Deformation of structures on manifolds defined by transitive, continuous pseudogroups. I. Infinitesimal deformations of structure, Ann. of Math. (2) 76 (1962), 306–398. MR 156363, DOI 10.2307/1970277
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 286 (1984), 1-71
- MSC: Primary 58H05; Secondary 17B65, 22E65
- DOI: https://doi.org/10.1090/S0002-9947-1984-0756031-0
- MathSciNet review: 756031