Codimension $1$ orbits and semi-invariants for the representations of an equioriented graph of type $D_{n}$
HTML articles powered by AMS MathViewer
- by S. Abeasis
- Trans. Amer. Math. Soc. 286 (1984), 91-123
- DOI: https://doi.org/10.1090/S0002-9947-1984-0756033-4
- PDF | Request permission
Abstract:
We consider the Dynkin diagram ${D_n}$ equioriented and the variety $\operatorname {Hom}({V_1},{V_3}) \times \Pi _{1 = 2}^n \operatorname {Hom} ({V_i},{V_{i + 1}})$, ${V_j}$ a vector space over $K$, on which the group $G = \prod \nolimits _{i = 1}^n {{\text {GL}}} ({V_i})$ acts. We determine the maximal orbit and the codim. $1$ orbits of this action, giving their decomposition in terms of the irreducible representations of ${D_n}$. We also deduce a set of algebraically independent semi-invariant polynomials which generate the ring of semi-invariants.References
- S. Abeasis, On the ring of semi-invariants of the representations of an equioriented quiver of type ${\cal A}_{n}$, Boll. Un. Mat. Ital. A (6) 1 (1982), no. 2, 233–240 (English, with Italian summary). MR 663286
- S. Abeasis, Codimension $1$ orbits and semi-invariants for the representations of an oriented graph of type ${\cal A}_{n}$, Trans. Amer. Math. Soc. 282 (1984), no. 2, 463–485. MR 732101, DOI 10.1090/S0002-9947-1984-0732101-8 S. Abeasis and A. Del Fra, Degenerations for the representations of an equioriented quiver of type ${A_m}$, Boll. Un. Mat. Ital. Suppl. Algebra e Geometria 2 (1980), 158-171. —, Degenerations for the representations of a quiver of type ${A_m}$, J. Algebra (to appear).
- S. Abeasis, A. Del Fra, and H. Kraft, The geometry of representations of $A_{m}$, Math. Ann. 256 (1981), no. 3, 401–418. MR 626958, DOI 10.1007/BF01679706
- I. N. Bernšteĭn, I. M. Gel′fand, and V. A. Ponomarev, Coxeter functors, and Gabriel’s theorem, Uspehi Mat. Nauk 28 (1973), no. 2(170), 19–33 (Russian). MR 0393065
- Vlastimil Dlab and Claus Michael Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+57. MR 447344, DOI 10.1090/memo/0173
- Pierre Gabriel, Représentations indécomposables, Séminaire Bourbaki, 26ème année (1973/1974), Lecture Notes in Math., Vol. 431, Springer, Berlin, 1975, pp. Exp. No. 444, pp. 143–169 (French). MR 0485996
- Dieter Happel, Relative invariants and subgeneric orbits of quivers of finite and tame type, Representations of algebras (Puebla, 1980) Lecture Notes in Math., vol. 903, Springer, Berlin-New York, 1981, pp. 116–124. MR 654706
- Dieter Happel, Relative invariants and subgeneric orbits of quivers of finite and tame type, J. Algebra 78 (1982), no. 2, 445–459. MR 680371, DOI 10.1016/0021-8693(82)90092-8
- V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), no. 1, 57–92. MR 557581, DOI 10.1007/BF01403155
- V. G. Kac, Infinite root systems, representations of graphs and invariant theory. II, J. Algebra 78 (1982), no. 1, 141–162. MR 677715, DOI 10.1016/0021-8693(82)90105-3
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336, DOI 10.1017/S0027763000017633
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 286 (1984), 91-123
- MSC: Primary 14L30; Secondary 14D25, 16A64
- DOI: https://doi.org/10.1090/S0002-9947-1984-0756033-4
- MathSciNet review: 756033