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ADAPTED PROBABILITY DISTRIBUTIONS

BY

DOUGLAS N. HOOVER1 AND H. JEROME KEISLER2

Abstract. We introduce a family of notions of equivalence for stochastic processes

on spaces with an underlying filtration. These refine the notion of having the same

distribution by taking account of the relation of the processes to their underlying

filtrations. The weakest of these notions is the same as the notion of synonymity

introduced by Aldous. Analysis of the strongest equivalence property leads to spaces

with a strong universality property for adapted stochastic processes, which we call

saturation. Spaces having this property contain 'strong' solutions to a large class of

stochastic integral equations.

Two random variables are alike if they have the same distribution, and two

Markov processes are alike if they have the same finite dimensional distribution.

However, in general two stochastic processes may have the same finite dimensional

distribution but behave quite differently. This is particularly true in the "Strasbourg"

setting where a stochastic process x(/, to) lives on an adapted space (or stochastic

base), i.e. a probability space (B, P) endowed with a filtration,^, / g R+. The finite

dimensional distribution of x does not depend at all on the filtration J5;.

In this paper we introduce the adapted distribution of a stochastic process, which

plays the same role for stochastic processes that the distribution plays for random

variables. The adapted distribution of a process x(t, to) on an adapted space is

defined as follows. (For simplicity assume that x is bounded.) We consider the

family of new stochastic processes in finitely many time variables obtained from x

by iterating the following two operations: (1) composition by continuous functions,

and (2) conditional expectation with respect to J5;. An example is the process

,/£[(x(0)2|^].

Another example with two iterations of the expected value operator is

£[exp(x(*)-£[x(0K])|^].

Two stochastic processes x and y (on perhaps different adapted spaces) have the

same adapted distribution if each pair of new processes obtained from x and y by

iterating (1) and (2) have the same finite dimensional distribution.
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By restricting to n iterations of the expected value operator we obtain a sequence

of stronger and stronger equivalence relations x = „ y, n = 0,1,2,..., between

stochastic processes. The weakest relation x = 0 y, says that x and y have the same

finite dimensional distribution. The next relation, x = x y, says that x and y are

synonymous in the sense of Aldous [1981]. x and y have the same adapted

distribution, x = y, if x = n y for all n. For each n, =n + x strictly refines ■„.

Aldous [1981] has shown that several important properties of stochastic processes

are preserved under the synonymity relation x =, y, including the property of being

adapted, being a martingale, and the Markov property. The first author has shown

that local martingale and semimartingale properties are also preserved under syn-

onymity. We show, however, that the most powerful property of ■ , the existence of

spaces with a saturation property, fails for synonymity.

The objective of this paper is to support the thesis that two processes with the

same adapted distribution share the same probabilistic properties. Our results show

this for stochastic integration, provided the processes live on a sufficiently rich

adapted space.

There is a close analogy between the adapted distribution of a stochastic process

and the complete theory of a structure in the sense of model theory. The model-theo-

retic aspects of the adapted distribution are discussed in Rodenhausen [1982] and

Keisler [1983].

§1 of this paper is a brief summary of notation. §2 contains the definition and

basic properties of the adapted distribution. In addition to the relation x = y of

having the same adapted distribution, we introduce the weaker relation x = y a.e. of

having the same adapted distribution for almost all / g R+. It is shown that if x and

v are Markov processes, then x =0 y implies x = y. If x and y are right continuous,

or even right continuous in probability, then x = y a.e. implies x = y.

§3 contains examples showing that x =n y is weaker than x =„+1 y for each n. In

particular, x =, y is weaker than x = y.

In §4, we begin the study of rich adapted spaces by defining and constructing

complete and atomless adapted spaces. The key existence proof uses nonstandard

analysis.

§5 explains what we mean by a sufficiently rich adapted space. An adapted space

B is said to be universal if for every process x on any adapted space A there is a

process x on fi such that x = x. B is called saturated if for every pair of processes

(x, y) on any adapted space A and any process x on B with x = x, there is a process

y on B with (x, y) = (x, y). Saturated implies universal. Saturated spaces are

convenient because given any stochastic process on the space, there is always room

in the space for a second stochastic process having a given relation to the first

process. Familiar adapted spaces, such as measures on C[0, oo) or D[0, oo) with

the natural filtrations, are not saturated. The proof of the existence of saturated

adapted spaces uses the results from §4. We also prove that any equivalence relation

which preserves the martingale property and has a saturated space is at least as

strong as = .
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§§6 and 7 contain applications of saturated adapted spaces. In §6 we show that on

saturated spaces the local martingale and semimartingale properties depend only on

the adapted distribution. More precisely, if x is a local martingale on an adapted

space A, and x is an r.c.1.1. process on a saturated adapted space B with x ■ x, then

x is a local martingale. The result for semimartingales is similar. §7 contains results

in the same vein for stochastic integrals and stochastic integral equations with

respect to semimartingales.

1. Notation. As usual, R+ is the set of nonnegative real numbers and N the set of

natural numbers. By an adapted (probability) space, or stochastic base, we mean a

structure

Q - (a, p,p, ),.,*,

where P is a complete probability measure on the sample space B, and !?t is a

o-algebra on B for each / G R+ with the following properties (called the usual

conditions).

Right continuity: J5, = C\s>l^.

Compatibility with P: &, c &K = the set of P-measurable sets.

Completeness of9^0: Each null set of P belongs to J*"0.

The family (^,),eR- is called a filtration on (B, P) if it satisfies the usual

conditions.

A Polish space Misa complete separable metrizable topological space.

Since we wish to compare stochastic processes on different adapted spaces, we

want each stochastic process to carry on with it an adapted space.

By a stochastic process (x) (on B with values in M) we mean a structure

(x) = (B, x) where B = (B, P, ^,)i<eR~ is an adapted space, M is a Polish space,

and x is a function x: B X R+-» M which is measurable with respect to the product

of J^, and Borel sets on R+, and Borel sets on M.

We shall usually write x for the process (x). x and y always stand for stochastic

processes.

Suppose x and y are processes on the same adapted space B. x is indistinguishable

from y if for almost all to g B,

x(-,u)-y(,a).

x is a version of y if for all / g R+,

x(t, to) = y(t, u)    a.s.

x is an a.e. version of y if the above holds for almost all / g R+. By an r.c.1.1. process

we mean a stochastic process x(to, /) such that almost every path x(to, ■) is right

continuous with left limits.

By an n-fold stochastic process on B we mean a measurable function

/:Bx(R+)"^M.

A tuple of reals is denoted by F, and the length of Tis denoted by |F|. The indicator

function of a set S is denoted by 1(5).
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2. Adapted distributions. In this section we define our basic equivalence relation

x = y, which states that the stochastic processes x and y have the same adapted

distribution. We let M be a Polish space which remains fixed throughout our

discussion. In order to define the adapted distribution we introduce a family of

functions /, called conditional processes, which associate with each stochastic

process x on B an «-fold stochastic process fx on B. The family of conditional

processes is defined inductively and the first step in the induction determines the

usual finite dimensional distribution of x.

Definition 2.1. For each n, each bounded continuous function 4>: M" -» R and

each stochastic process x with values in M, 4>x is the «-fold stochastic process

**('i.'„) = *(*,,.••"*'„)•

Remark 2.2. Two stochastic processes x and y have the same finite dimensional

distribution if and only if

£[4>x(',,•••,'„)] -£[**(»„...,/„)]

for all $ and all tx,...,tn.

The finite dimensional distribution of x depends only on (B, P, x) and not on the

filtration J^. Our next notion depends strongly on J^.

Definition 2.3. The class CP of conditional processes (in M) is defined inductively

as follows.

(2.3.1) (Basis) For each n and bounded continuous $: M" -* R, 4> g CP.

(2.3.2) (Composition) If /,,...,/„ g CP and <p: R" —> R is a bounded continuous

function, then<p(fx./„) g CP, where<*>(/,,...,/m)x = <p(/,x,...,/mx).

(2.3.3) (Conditional Expectation) If/is an «-fold conditional process fx(tx,.. .,/„),

then £[/|0 is an n + 1-fold conditional process, where E[f\t]x(t, tx,...,tn) is a

version of £[/x(í,,.. .,í„)|J?¡].

Each conditional process is obtained from basic processes by iterating the com-

position and conditional expectation operations finitely many times. Since only

bounded continuous functions are used, the conditional expectations are always

finite, and each conditional process is uniformly bounded. Since conditional expec-

tations are only unique up to a null set, the value of a conditional process at x is

only unique up to a version. Here is a typical example of a conditional process with

two iterations of the conditional expectation operator.

Example 2.4./ = £[(£[sin(í,)|í2])2|/3] is the 3-fold conditional process

(£[sin(x(fl))|js;2])21fx(tx,t2,t3) = £ \F..

The number of iterations of the unexpected value operation in / is called the rank

off. Formally, the rank is defined by induction.

Definition 2.5.

(2.5.1) For each n and $, the conditional process 4> has rank zero.

(2.5.2) The rank of the composition <p(/,,...,/m) is the maximum of the ranks of

the conditional processes/,,... ,/„,.
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(2.5.3) If /is a conditional process of rank r, then E[f\t] is a conditional process

of rank r + 1.

The conditional process / in Example 2.4 has rank two. We are now ready to

introduce our main notion.

Definition 2.6. Two stochastic processes x and y (on perhaps different adapted

spaces) have the same adapted distribution (or adapted ¡aw), in symbols, x = y, if

(2.6.1) E[fx(tx,...,tn)}=E[fy(tx,...,tn)}

for every «-fold conditional process/and all r,,... ,t„ g R+.

x and y have almost the same adapted distrubtion, x = y a.e., if for every / (2.6.1)

holds for almost all tv...,t„e (R+)".

x and y have the same adapted distribution up to rank r, x =ry, if (2.6.1) holds for

every/of rank at most r and all tx,... ,t„. Thus x = y if and only if x =ry for all r.

Given a subset T of R+, x and y have the same adapted distribution on T, x = y on

T, if (2.6.1) holds for every/and all tx,... ,t„ g T".

We state three easy facts.

Proposition 2.7. (i) If x and y are processes on the same adapted space and y is a

version of x, i.e. x(t) = y(t) a.s. for all t, then x = y.

(ii) For any x and y, x =0y if and only if x and y have the same finite dimensional

distributions.

(iii) //R+- T is a null set and x = y on T then x = y a.e.

Aldous [1981] studied the relation x *t y (\x and y are synonymous|). He showed

that various properties of stochastic processes are preserved by synonymity. In

particular, if x is ^¡-adapted, J^-Markov, or an J^-martingale and x = x y, then y is

^,-adapted, ^,-Markov, or a ^,-martingale, respectively. These results suggest at first

sight that the synonymity relation x =, y should play the role for adapted spaces

which equality in distribution plays for probability spaces. We shall show in this

paper that x =, y is not strong enough for this purpose, but that the stronger

relation x » y is. We shall also see that for each r, x =r+x y, and hence x = y, is

strictly stronger than x = r y.

We say that a stochastic process x is Markov if x is ^¡-Markov, that is, x(t) is

immeasurable and for every bounded continuous $: M -» R and s < t,

£[#(*<f))|*H - £[*(*(f))|*(i)]    a.s.

We now show that if x is Markov, then the adapted distribution of x depends only

on the finite dimensional distribution of x.

Theorem 2.8. Suppose x, y are Markov. Then x = y if and only if x =0y.

Proof. Let x = 0 y. We shall show by induction that for every «-fold conditional

process/and every 7 G (R+)" there is a bounded Borel function xpfl: M" -» R such

that

(281) /x(í) = ^/í(x(í1),...,x(ín))   a.s.,
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For each bounded continuous function 3>: M" -» R, the function ^$7 = $ has the

required property (2.8.1). If/ g CP has the form/ = <p(/r,... ,/m) we take

This takes care of the basis step and the composition step in the induction. For the

conditional expectation step, let g = £[/|s] where/is an «-fold conditional process

and suppose s g R+, 7 g (R+)n and \¡/f-, satisfies (1). Since x is Markov and t/y 7 is

bounded,

E[xpfr,(x(tx),...,x(tn))\^

= E[xpfl(x(tx),...,x{tn))\x(s),x(tx),...,x(tj)]    a.s.

where tx < ■ ■ ■ < tj < s < tJ + x.

Therefore there is a bounded Borel function ^7 on M" + ' such that

(2.8.2)    E[xp/ri(x(tx),...,x(tn))\^=xpgil(x(s),x(tx),...,x(tn))    a.s.

(In fact, xpgs- depends only on x(s) and those x(t,) where t, < s.) Applying (2.8.1)

for fx, we have

gx(*7) = £[/x(7)|^] = £[^/.7(x(/1),...,x(/„))|^]

= i>gM(x{s),x{tl),...,x{tn))   a.s.

Thus (2.8.1) holds for gx. Since x and y are Markov processes with the same f.d.d., y

has the same transition functions as x. Therefore (2.8.2) and hence (2.8.1) hold foi y

with the same choice of xpg s-r This completes the induction. Finally, since x = 0 y we

have

£[/x(7)]=£[^7(x(?1),...,x(/J)]

= E[xpf!(y(tx),...,y(tn))]=E[fy(0}

for all / g CP and all 7, whence x = y.   D

We next show that if x and y are right continuous in probability then x = y a.e.

implies that x = y (Corollary 2.15).

Definition 2.9. Let 2 be an n-fold stochastic process with values in a complete

separable metric space (M,d). z is right continuous in probability if for every

7 g (R+)n and every £ > 0,

limP[d(z(ü),z(t))>e] =0
ult

where7< « means tx < «,,...,tn < un.

Notice that if d(z(u), z(t)) is uniformly bounded then this is equivalent to the

condition

X\mE\d{z(u),z(i))\ =0.
ui't

If almost every path of z is right continuous, then z is right continuous in

probability.
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Theorem 2.10. Suppose x is right continuous in probability. Then for every n-fold

conditional process /, fx is right continuous in probability.

Proof. The proof is by induction on the construction of /. The only nontrivial

step is the conditional expectation operation. Suppose /= £[g|j] where g is an

«-fold conditional process and gx is right continuous in probability. To simplify

notation let « = 1, so g is one-fold and /is two-fold. Fix s, t g R+, so

(2.10.1) fx(s,t) = E[gx(t)\^\.

Then

(2.10.2) lim     E[\fx(u,v)-fx{s,t)\]<      lim     E[\fx(u, v) - fx(u, t)\]
(u.(')I(j.í) (u.v)l(s.t)

+ Mm E[\fx(u,t)-fx(s,t)\}.
u Is

We have

E[\fx(u,v) - fx(u,t)\\ = E[\E[gx(v)\Sru] - E[gx(t)\<Fu]\]

- E[\E[gx(v) -gx(t)\*u]\]

^ E[E[\gx(v) - gx(t)\\^u]]

= E[\gx(v)-gx(t)\}.

Therefore

(2.10.3) lim     E[\fx(u,v)-fx(u,t)\] ^UmE[\gx{v) - gx(t)\] = 0.
(u.v)l(s.t) vit

On the other hand, since

h(u)=fx(u,t) = E[gx(t)\3ru]

is a martingale, it has a right continuous version and hence is right continuous in

probability. Thus

(2.10.4) lim£[|/x(w, /) -/x(s, i)|] - 0.
u Is

From (2.10.2)-(2.10.4) it follows that

lim     £[|/(ii,i;)-/(i,0|] =0.    D
(u.v)i(s.t)

If the process x has the stronger property that for each t

limx(u) = x(f )    a.s.,
ult

it can be shown that fx has this property for every conditional function /. However,

if x has the still stronger property that almost every path of x is right continuous, we

do not know whether fx must have that property (jointly in « variables).

In the following lemma we will consider a slightly extended notion of conditional

process. A Borel conditional process is defined as in 2.3 except that in the basis step

(2.3.1) of the formation of a Borel conditional process, we will allow any bounded

Borel function M" -» R to be used.
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Lemma 2.11. Let f be an n-fold Borel conditional process. Let ($j,...,$m) be the

Borel functions used in building f in the basis step (2.3.1), and let <px,...,<pk be the

continuous functions used in building f in the composition clause (2.3.2). Suppose that as

j-* oo

($},...,*>) -» ($,.$J   pointwise,

(<p{,...,<pj) -» (<px,...,<pk)    uniformly on compact sets,

wwere $/ are Borel, <p/ are continuous, and all are uniformly bounded. Let fJ be the

Borel conditional process formed in the same way as f but with 4>{.$¿, <p{,..., tp{ in

place of Qx,...,$m,<px,...,<pk. Thenf'x(t) -* fx(l) a.s. for every t g (R+)n.

Proof. We argue by induction on the construction of/. The basis step (2.3.1) is

trivial. For the composition step (2.3.2), we will assume, to simplify notation, that

/= (¡p(g) for some g g CP and bounded continuous <p: R -» R. By induction

hypothesis, gJx(t) -* gx(t) a.s. If we take any to such that gJx(t, to) -* gx(t, u),

{g'x(t, w), gx(t, to): j G N} is a compact set. Since tp; -» <p uniformly on compact

sets, it follows easily that yJ(gJx(t, to)) -» <p(gx(f, to)). For clause (2.3.3), let / =

£[g(7)|i] and suppose gJx(t) -» gx(7) a.s. for all 7. Since gx is uniformly bounded,

it follows by dominated convergence that

£[gM7)|^]-£[gx(7)|^]    a.s.

for all s, 7, that is

f]x(s,~t) -» fx(s,l)   a.s.   D

Definition 2.12. (i) If S is a set of real-valued functions, the set generated by S

by bounded pointwise convergence is the smallest set of functions containing 5 and

closed under pointwise convergence of uniformly bounded sequences of functions.

(ii) For each «, choose a countable set of bounded functions Sn ç C(M", R), such

that the class of bounded Borel functions M" -* R is the set generated by Sn by

bounded pointwise convergence, and a countable set of bounded functions Un ç

C(R",R) such that for each integer m, Un n C(R",[-«t, m]) is dense in the compact-

open topology on C(R",[-m, m]). Let CP° be the set of conditional processes

formed using only functions from the countable family

LJ5„u û un.

Thus CP° is a countable subset of CP.

Corollary 2.13. Let T c R+.

(i) x=ry on T if and only if E[fx(t)] = E[fy(0] for all n-fold /g CP° of

rank < r and all t^g T".

(ii) Let x and y be right continuous in probability and let T be dense in R+. Then

x = y if and only if x = y on T.
(iii) Let T be countable and let (x,),er and (y,),eT be the MT-valued random

variables

(ï,),er(w)= (*(f.»))ie.T.     (.y,)ie7-(«) = ( jK*. «))ie7-
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(xt)t<ET and (yi)teT may oe considered as MT-valuedprocesses with constant sample

paths.

Then x ■ y on T if and only i/(x,),e7- * (y,),^ on T-

Proof, (i) The proof follows from Lemma 2.11.

(ii) The proof follows from Theorem 2.10.

(iii) Observe that every conditional process/x(7) with íe 7" can be identified with

a conditional process g(xs)seT-(t). Conversely, any conditional process g(xs)seT(t),

7 g T, formed using only bounded continuous functions (MT)n -» R which depend

on only finitely many coordinates of MT may be identified with a conditional

process fx(s, 7), s G T. Since the bounded Borel functions (MT)n -» R are gener-

ated by the finite dimensional bounded continuous functions by pointwise conver-

gence, the conclusion follows by Lemma 2.11.   D

Proposition 2.14. Suppose x = y a.e. and let p. be a measure on R* which is

absolutely continuous with respect to Lebesgue measure. Then (1) x = y on T and (2)

(x, x,),eT = (y, y,),^Ta.e. for p,N-almost every sequence T ={?„:« G N} ç. R+. In

particular, there is a countable dense set T satisfying (1) and (2). The same holds for = r

in place of = .

Proof. Since x = y a.e., for each « (1) and (2) hold for /¿"-almost every sequence

Tn = {(,,...,<■„}. By the Fubini theorem, for each n g N and uN-almost every

sequence {tk: k G N}, Tn = {(,,...,/„} satisfies (1) and (2). Thus for /xN-almost

every sequence T = {tk: k G N}, each Tn = {tx,...,tn} satisfies (1) and (2), and

hence T satisfies (1) and (2).

If u is the measure given by

íi[a,¿>] = fe-dt,

then ¿iN-almost every sequence 7,= {/n:«GN}is dense in R+, so (1) and (2) hold

for a countable dense T.   D

Corollary 2.15. If x = y a.e. and x and y are right continuous in probability then

x=y.

Proof. By Theorem 2.10.   D

Remark. We shall use the fact that certain properties of stochastic processes

depend only on the finite dimensional distributions, that is are preserved under the

relation x = 0 y. For example:

(i) If x is right (left) continuous in probability and x = 0 y, then y is right (left)

continuous in probability.

(ii) If for each t g R+, x is a.s. right (left) continuous at / and x =0y, then y has

a version z such that for each t g R+, z is a.s. right (left) continuous at t.

(iii) If every path of x is right continuous with left limits and x = 0 y, then y has a

version z such that every path of z is right continuous with left limits.

(iv) If every path of x is a right (left) continuous step function and x = 0 y, then y

has a version z all of whose paths are right (left) continuous step functions.
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Definition 2.16. The stochastic processes mrx, r = 1,2,..., and mx are defined

by

mrx(t) = <£[ fxCs)\^, ] :/G CP°,/has rank < r, s is rational),

mx(i)= (£[/x(?)|J^ ]:/g CP0,?rational).

For each t and to, the value of mx(t, to) is a countable sequence of reals and will be

identified with an element of the Polish space RN with the product topology.

Proposition 2.17. (i) mx(t) and mrx(t) have right continuous, left limit, ^,-adapted

versions.

(ii) mx(t) is^,-Markov.

Proof. mx(t) and mrx(t) are .^¡-martingales in each coordinate, and (i) follows.

To prove (ii) it suffices to show that for each «-tuple «,,... ,«„ of coordinates of

«ix, each bounded continuous function \p : R" -» R from a countable dense set, and

each 5 < t in R+,

(2.17.1)    E[xp(hx(t),...,hn(t))\^] =E\xp(hx(t),...,hn(t))\mx(s)}    a.s.

From the definition of mx we see that for each / < n,

«,(/) = £[/x(S,)|^]

where/ g CP° and w, is rational. Moreover, if \p g U„,

xP(hx(t),...,hn(t))=fx(t,u)

for some/ G CP° and rational u. For each rational v,

E[ xp(hx(v),...,hn(v))\^ ] = E[fx(v,u)\^s ]

is itself a coordinate of mx and is therefore mx(j)-measurable. Hence (2.17.1) holds

whenever t is rational. Moreover, since «jx(f ) has a right continuous version, and \p

is bounded,

e[ xp(hx(t)„..,hn(t))\^ ] = hm£[ xp(hx(v),...,hn(v))\<Fs ]    a.s.
r ll
reo

by dominated convergence. Hence (2.17.1) holds for all t.   D

The next result shows that if x is right continuous in probability, the adapted

distribution of x is determined by the finite dimensional distribution of the Markov

process «ix.

Proposition 2.18. Let x and y be right continuous in probability.

(i) For each r ^ 1 and teN,

mrx =kmry

if and only if x =r+ky.

(ii) x = y if and only if mx = 0 my.
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Proof, (i) implies (ii), since if mx -0my, then wrx = 0mry for all r > 1, so x = y

by (i).

To prove (i), suppose first that mrx =kmry. By Lemma 2.11, we may further

restrict h to be in CP°. To prove that x =r+ky it will, by the Stone-Weierstrass

Theorem and Corollary 2.13, suffice to show that £[/x(7)] = E[fy(t)\ for 7 rational

and /of rank < r + k of the form

f(*[ftl*i]:,<i|) • *(•/('/):'<«)>

where t = tx,...,t„.

Now for any t and process z,

£[/z(7)]=£[£[/z(7)|,]].

If j is chosen to be greater than or equal to any parameter in 7, then

E[ fz(t)\s] =<p(e[ g,z(7)|f,] : / ^ «)£[ -MM',): ' « «)k] ■

Since r $t 1, £[/z(7)|s] has rank < r + k. £[/z(7)|s] also has the property that any

subexpression of the form $(v) occurs only inside some subexpression of the form

£[g|u]. Thus it suffices to check that

E[hx(s)} = E[hy(s-)]

for s G 2. and h having this property. But for such h one may easily show that for

any t g i? there is a conditional process «' on RN of rank < k such that «z(7) =

h'mrz(t) for any z. Thus

£[«x(7)] = £[«'«irx(7)] = E[h'mry(i)\ = E[hy(l)\

and it follows that x =r+ky.

Now assume x —r+ky and show that mrx =kmry. For each «, the functions with

support on only finitely many coordinates generate the Borel functions: (RN)" -> R

by bounded pointwise convergence. Hence by Lemma 2.11 it suffices to show that

£[/mrx(7)] = E[fmry(7)] for/of rank < k formed using only such functions. But

for every such /there are a conditional process g on M of rank < A: + r and rationals

S such that fmrz(t) = gz(7, j) for every M-valued process z. Since x =r+k y it

follows that mrx = kmry.   D

Notice that by 2.8 and 2.18, x = y if and only if mx = my. The process mxx is

similar to the Knight prediction process [1975] as modified by Aldous [1981], and

the processes mrx, mx are closely related to the processes obtained by finite and

infinite iterations of the construction of m,x. Knight confines his attention to the

case where ^ is the filtration generated by x(f ), and shows that in that case one

does not get anything new by iterating the prediction process. In our notation, he

shows that if x, y G 31 are such that the filtrations J5, of x and St of y are generated

by x(?) and ^(0^ then x =, y if and only if x = 2 y, and hence if and only if x = y.

In the next section we show that this fails in general.
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Lemma 2.19. Let (M, p) be a Polish space and let x„, yn be processes on the same

adapted space with values in M such that for all t,

p(x„(t), y„(t)) - 0

a.s. or in probability. Then for every t g (R+)" and every conditional process f,

|A.(')-A.(')|-o

a.s. or in probability.

Proof. Similar to Lemma 2.11.   D

Proposition 2.20. Let x„, x, y„, y be processes such that:

(i) All the x„ s and x are on the same adapted space and for all t, lim„^ x x„(t ) =

x(t) in probability.

(ii) All the yn's and y are on the same adapted space and for all t, limn_xyn(t) = y(t)

in probability.

(iii) For each n g N, xn = y„.

Then x = y.

Proof. By Lemma 2.19, for each conditional process/and each 7 g (R+) we have

/x„(7) ->/x(7) in probability,

fy*(t)^Jy(t) in probability.

Therefore

£[/x„(7)]-£[/x(7)], E[jymÇt)\*E[fyÇt)\.

Since x„ s yn, E[fx„(t)] = E[fyn(t)], so £[/x(7)] = E[fyO)].   U
The above result also holds with = replaced everywhere by = k, by the same

proof.

The main results concerning adapted distribution in §5 are most conveniently

proved for r.c.1.1. processes. We can extend them to both = and = a.e. for general

processes by showing how sa and * a.e. can be expressed in terms of = for certain

associated r.c.1.1. processes.

Definition 2.21. Let 3>„, « g N, be a fixed sequence of bounded continuous

functions M xR + -» R which generate the Borel-measurable functions M x R+-> R.

Define

Sx:B x R+^RN,

the sojourn process of x, by

Sx(t)~lj%H{x(s),s)ds:neN\.    □

Sx is a process on the same adapted space as x, and since each coordinate of Sx is

an integral, Sx is continuous.
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Theorem 2.22. For any processes x andy, the following are equivalent.

(1) x = y a.e.

(2) Sx s Sy.

(3)(x,Sx)m(y,Sy)a.e.

The same holds for = r, r G N.

Proof. There is no difference in the = and =r cases. It suffices to show (1) =» (3)

and (2) =» (3), since (3) => (1), (2) is trivial.

(1) => (3): We show that there is a measurable function tp: A/N -» C(R+, R)N and

a countable set T Q R+ such that

{x,x,:teT)m(y,yt:teT)   a.s.

and

Sx = <p(x,: t g T) a.s.,    Sy = <p(yt: t g T) a.s.

Give [0, u) the uniform probability. By the conditional form of the Strong Law of

Large Numbers, for each bounded continuous $: M x R+-> R, each u g R+, and

almost all sequences {/„:«gN}c[0,m),

u ,V

j <S>(x(s), s) ds = lim -^ £ *(*(/„), O    a.s.

It follows that for almost all {/„: « g N} ç [0, m) , Sx(u) is a.s. o(x(r„), « g N)-

measurable. The same goes for y. Let {qk k g N} enumerate the rationals. By the

foregoing and Proposition 2.14 we may successively choose for each k g n a

sequence {i*, « g N} in [0, qk) such that Sx(qk) and Sy(^A) are a.s. a(x(/*))- and

a(^(r* ))-measurable, respectively, and

(x,x{tJ„):j ^k,n g N) ■ (.y, ^(/¿):y < A:, n g N)    a.s.

Then £ = {f*: /c, n g N} is a countable set such that Sx is a.s. a(x(/): / g T)-

measurable, Sy is a(y(t): t g T)-measurable, and

(4)(x,x,:/g T) = (y, y,: t <= T)a.s.

It follows that there is a Borel-measurable function <p such that

<p(x,: / g T) = Sx a.s.,   <p(>>,:? g T) = Sy a.s.

By (4), it follows that (x, Sx) = (y, Sy) a.e.

(2) =» (3): consider x and Sx as measurable functions on the space B x R+. For

each open set U ç. M, the increasing, absolutely continuous process

z, = Ç\{x{s) g U)ds

is Sx-measurable and {x g ¡J} is a.e. the set where the Radon-Nikodym derivative

with respect to P X ds of the measure on (B X R+, o(Sx) X 98) induced by z is 1. It

follows that there is a Borel-measurable function <p: C(R+, RN)xR+->M such that

x = <f(Sx, ■) a.e. P X ds. Let

x = <p(Sx,-),   y = <p(Sy, ■).
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Since x = x a.e., it follows easily that Sx = Sx. By the proof of (1) => (3), this

implies that

(x, Sx, Sx) = (y, Sy, Sy),

hence Sy = Sy a.s. But this just says that

l<b(y(s), s) ds = f<b(y(s), s) ds   a.s.

for every measurable function $, so y = y a.e. Q x ds. Since (x, Sx) = (y, Sy) it

follows that

(x, Sx) = (y, Sy)    a.e.   D

Corollary 2.23. If x = y a.e. (or x =r y a.e.) then there are processes x, y such

that

x-xa.e.,   y=ya.e.,   x=y   (orx=ry).

Proof. Let x, y be as in the proof of Theorem 2.22.   D

Proposition 2.24. If x is a stochastic process then there is an r.c.l.l. process

z:R+X B^ {0,1}N

anda Borel-measurable function <p: {0,1 }N -» M such that for all t G R +

<p(z(/)) = x(0    a.s.

If x = y,we may choose <p and r.c.l.l. processes z,w such that z = wandx(t) = y(z(t))

a.s. andy(t) = tp(w(t))a.s.for all t g R+.

Proof. First observe that for every J^ X ^-measurable set S, there is a

o(x(t): t g R+)-measurableprocesse such that for every / g R+,

e(t) = E[ S(/)k(x,:/G R+)]    a.s.

This is trivial for finite unions of measurable rectangles. Since sections and

conditional expectations commute with monotone limits, it follows for all 98 X im-

measurable sets by the monotone class theorem. Now if S is {x g U} for U an open

set of M, S(t) is a(x(t): t g R+)-measurable for each /, so for all t, S(t) = e(t) a.s.

It follows that x has a 98 x o(x,: t g R+)-measurable version x. Thus there must be

E„ G a(x(tn)), t„ G R+, a„, bn g R+, such that

x = <p(l([fln,èn)x£):«GN)

for some measurable function from {0,1 }N to M. Now the process

z - (l([a„, bn) X E„) : n e N)

is r.c.l.l. and of the form

:(0^(i,WO:»eN))
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for some measurable function xp which is r.c.l.l. in /. Since x is a version of x,

x(t) = <p(z(t)) a.s. for all /. Now if w is given by w = xp(t,(y(tn): n g N)) then since

x = 0 y, for all t

y(t) = <p{w(t))   a.s.

Clearly z, w and <p satisfy the conclusions of the proposition.   D

We finish this section with a result which shows that CP° is a convergence

determining class for a notion of convergence in adapted distribution.

Definition 2.25. Let x„, « g N, and x be stochastic processes on (B x R +) -» M,

and let T ç R+.

(2.25.1) We write

x„ -* x   on T,
ad

x„ converges in adapted distribution to x on T, if £[/x„(7)] -» £[/x(7)] for each

conditional process/and t in T.

(2.25.2) We write

x„ -»    on T
ad

if £[/x„(7)] converges for each conditional process /and 7 in T.

(2.25.3) The sequence x„(t) is said to be tight (see Billingsley [1968]) if for each

real e > 0 there is a compact set K ç M such that P[xn(t) g K] 3* e for each « G N.

The notion x„ -> ad x also makes sense if the x„ and x are on different adapted

spaces. If x„ ->ad x on T, then x„(/) converges in distribution to x(f) for each t in T,

and hence by Prokhorov's theorem, the sequence x„(i) is tight.

Theorem 2.26. Let x, x„, n g N, be adapted processes, not necessarily on the same

adapted space, and let T be a subset ofR+ such that, for each t g T, {x(t), xn(t)} is

tight, and for every f g CP° andl G T

£[/x(7)] -£[/x(7)],

then xn -» ad x o« 7.

Proof. We show by induction on formation that for each t g T, f g CP, and

£ > 0, there is/e in CP° such that for sufficiently large «,

(2.26.1)      E[\Pxn(t) - fxn(t)\\ < e   and    £[|/£x(/) - fx(t)\] < e.

The basis case is most difficult. If 7 = /,,.. .,tk, let us write x(7) = (x(ii),... ,x(tk)).

We will first show that, for each t g T, x„(t) converges to x(7) in distribution.

Because products of compact sets are compact, {x„(7), x(7)} is tight. By Prokhorov's

Theorem, any subsequence of xn(t) has a subsequence which converges in distribu-

tion, so it suffices to show that every subsequence of x„(7) which converges in

distribution converges to x(7). But if £[$(x„ (7))] -» E[$(z)\ for some z, and for

every bounded continuous $, then
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for every OeSj, hence for every bounded Borel function $: Mk -» R, since Sk

generates these by bounded pointwise convergence. Thus we have in fact x„ (7) -*

x(r) in distribution. For each bounded continuous $: Mk -» R, choose now 3>E in S¿

such that

£[|^(x(7))-<D(x(7))|]<£/2.

Then since

£[|^(xn(7)) - *(x„(7))|] - E[\*'(x(t)) - *{x(t))\]

as n -» oo, (2.26.1) holds for 0 and 4>E for sufficiently large «. This completes the

basis case. Now suppose / is of the form q>(gx,...,gp), where <¡p is bounded and

uniformly continuous. For notational simplicity, take p = 1, g, = g, and assume

that <p is bounded by 1. Now g has bounded range. Hence we may choose a bounded

continuous <pE in un, also bounded by 1, which uniformly approximates <p within e on

a compact set K containing an e-neighbourhood of the range of g. Choose 8 <

min(l, e) so that \a - b\ < 8 implies both \<p(a) - <p(b)\ < e and \q>e(a) - <pe(b)\ < e.

Then if g* is as in (2.26.1), then for sufficiently large «,

(2.26.2)

P(\gt2xn(t) - gxH(0\ < *) < 1 - *,   P{\gs2*(t) - gx(t)\ < o) < 1 - 8.

If \gs2xn(t) - gxn(t)\ < 8, then g5x„(0 is in K, so

E[\<p'(gs2xn(t)) - <p(gxn(0)|] < E[\<pigs2x„(t)) - <p{g'2x„U))\]

+ £[|9(gs2x„(/))-(p(gx„(0)|]

<(e + 2o)+(e + 2o)    by (2.26.2)

^ 6e.

(2.26.1) now follows by e-juggling. The case/= £[g|/] follows immediately by

Jensen's inequality.   D

3. Some counterexamples. In this section we shall give finite examples showing

that the equivalence relation x = y is stronger than any of the relations x = „ y for

« g N. In fact, each x =ny is stronger than x =„_i.y. This shows that each

additional iteration of the expected value operator E[f\t] distinguishes more proper-

ties of a stochastic process. The examples proceed inductively from the following

simple example.

Example 3.1. Two processes x1 and y1 on the same adapted space B1 such that

xl -oy1 Dut not jc' -1 yl-

Let B1 = (B1, P\ &?) be the following adapted space:

Q1- {1,2}^= {(1,1),(1,2),(2,1),(2,2)}.

P1 is the counting probability measure on B1.
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For 0 < / < 1,^ is the algebra^1 = {0, B1}. For 1 < / < 2, J^1 is the algebra

^1={0,B1,{(1,1),(1,2)},{(2,1),(2,2)}}.

For 2 < t, J^1 is the algebra of all subsets of B1.

The processes x1 and yx are defined by

xl(u,t)

/(«./)

0 if / < 2,
<o(l)     if/»2,

0 ifi<2,
to(2)     ift>2.

In the following figure we identify the four elements of B1 with branches of a

binary tree and indicate the values of xl(u, t) ándito, /) along each branch.

d,i)

(1.2)

(2,1)

(2,2)

t       0

->

X^u.t) y^u.t)

Let « be the bijection of B1 defined by h(u) = (to(2), to(l)). In the figure, «

interchanges the middle two branches. We see at once that

(3.1.1) xl(hu,t)~yl(u,t).

It follows that x1 and y1 have the same f.d.d., that is,

(3.1.2) x1 «„/.

On the other hand we have

£[x1(',2)|^11](w) =

while

1 if to(l) = 1,

2 ifto(2) = 2

E\yl{-,2)\&xl)(w) - \    forallto.
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It follows that

(3.1.3) x1 *,/.

Example 3.2. For each « G N, two processes x" and y" on the same adapted space

B" suchthat x" =„^xy" but not x" =„y".

Assume « > 1. Let B" = {1,2}{U.2n). Let P" be the counting probability

measure on B". Let ^"be the set of all A c B" such that whether to g A depends

only on u(i) for i < /. In particular,

and

&,n = { 0, Ö"}    for 0 < t < 1

#rlH = &(Qn)    foi2n^t.

Let it: B"-> B"_1 be the mapping ir(to) = (to(3), w(4),...,to(2«)) obtained by

removing the first two terms of to. The processes x" and y" on B" are defined

inductively by

10 ift<2n,

x"(u,t) = lx"-'l(wu,t)    ift > 2«andto(l) = 1,

\yn~l{iru,t)     if / > 2« andto(l) = 2,

10 if/<2«,

y"(w,t) = ¡xn~l(vu,t)    ift > 2«andto(2) = 1,

^""'(irto.i)     if t 3* 2« and u(2) = 2.

The tree representation of x" is obtained by replacing each 1 in the tree for x1 by a

copy of the tree for x"~ \ and each 2 by a copy of the tree for j^- l. The tree for y" is

obtained in analogous manner. The full tree has 22" branches.

n-l

„n-1

n-l

.n-l

n-l

n-l

n-l

n-l

xn(u,t) yV.t)
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The figure below shows the trees for x2 and y2.

l

2

Hi

t  o

x'(u.t) y'(u.t)

Let « be the bijection of B" obtained by interchanging w(l) and to(2), that is

/i(to) = (to(2),io(l),to(3),to(4),...,to(2«)).

Then tr(h(u)) = w(to). In the tree, « interchanges the second and third subtrees

beginning at time t = 2. We now prove some results about the processes x" and_y".

(3.2.1) x*(ha, t)-y»(o,t).

Proof. By induction on n. The case « = 1 is given in (3.1.1). Assume the result for

n — 1. x"(-, t) and y"(-, t) are zero for t < 2«. Let t > 2«. Suppose first that

to(2) = 1. Then (/tto)(l) = 1, and

x"(«to,r) = x"-l{v(ht»),t) = x"'l{tru,t) -y"(w,t).

The case to (2) = 2 is analogous.   □

We now wish to prove

(3.2.2) For each conditional process f of rank < «,/x"(/tto) = /y"(to). Hence

E[fx"] = E[fy"],       x'mH_iy*.

Given a conditional process/(t,,... ,<m), let/" be the process

/-((1,...,rj =/((/,-2) v 0,...,(,„,-2) vO)

obtained by shifting the time two units to the left.
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We shall prove (3.2.2) and the following condition (3.2.3) simultaneously by

induction.

(3.2.3) Let « > 1. For every conditional process f of rank less than n,

lf-x-l(wo)     //to(l) = l,
IX   (dû) =   (

\f-y-l(w)    «y«(l)-2,

&•(*)-lf~X'~l{w)    ,/w(2)"1'

1/y-H™)  <r«(2)-2.
Proof of (3.2.2) and (3.2.3). We have already shown in Example 3.1 that (3.2.2)

holds for « = 1. Now assume that (3.2.2) holds for « - 1. We shall prove (3.2.3) for

«, arguing by induction on the formation of/. From the definition of x" and y" we

see that (3.2.3) holds for every basic conditional process <î>. The set of / for which

(3.2.3) holds is obviously closed under composition by bounded continuous func-

tions. Suppose finally that/has the form/ = £[g|/] where (3.2.3) holds for g. Since/

has rank less than n, g has rank less than « - 1. Then g' has rank less than « - 1,

and by (3.2.2) for « - 1,

E[g-x"-1} =E[g-y"1].

Suppose first that 0 < t < 1. Then by (3.2.3) for g,

/*"(«) = £[ gx"\<F0"] = E[gx"} = \E\g-x"-1] + i£[g-v"-']

= E[g-x"-1] =/-x""1(^) = E[g-y"-1} =f-y"-l(™).

Similarly,

fy"(u>)=f-x"-l(u)=f-y"-1(»).

Suppose next that 1 < / < 2. Then

/*"(«)-E[*x"|*i"](«)

E\g-x"-l\     if<o(l) = l,

E[g-y"-1]     ifu(l) = 2,

= £[g-x"-'] =f-x"~\™)

= E[g-y"l\=f-y"~l(™).

The computation of fy"(u) is the same as in the case 0 < t < 1. Finally, suppose

2 < /. Then f - 2 > 0, so

/*"(«)-£[sx"|*i"](«)

\E\g-x"-l\&,"_2l]{™)     if co(l) = 1,

' \e[ gy-^i-^i™)   ifto(i) = 2,

{f-x"-l{itw)     ifto(l) = l,

" \f-y"-x{w)    ifto(l) = 2.
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The computation of fy"(u) is similar. Thus (3.2.3) holds for all conditional processes

/of rank less than «.

Now assuming (3.2.3) for «, we prove (3.2.2) for n. Let / have rank less than «.

Then («to)(l) = to(2) and m(hu) = 7r(to), so

/x"(«to)= ,
'/"Jc"_1(w«)     ifw(2)=l,

J-y"-l(ftu)     ifto(2) = 2,

-#"(«).   D

To complete the example we show that

(3.2.4) xn*„v\

Proof. The case n = 1 is shown in Example 3.1. Assume the result for « - 1.

That is, there is a conditional process g of rank « - 1 such that E[gx"~l]J= E[gy"~1].

Form the conditional process g+ by shifting times two to the right, so that (g+)~ = g.

By (3.2.3),

+ \gx»-\™)    ifto(l) = l,
e x ( to ) = (

\gy"-l(™)    ifw(l) = 2.

Let/be the conditional process/ = £[g+|l] of rank «. Then

/x"(to) = £   g x"^" (to) =
\E[gy"  ']      ifw(l) = 2.

By a similar computation,

fy»(U) = \E\gx-1] + \E\gy"-1].

It follows that x" *Hy".

By conditioning backwards we can show that the relation =n is stronger than

= „_, even for martingales.

Example 3.3. Let n > 1 a«t/

xn(to,0 = e[ xn(-,2n)\&tn\,   y"(u,t) = e[ y" (■ ,2n)\&,"\

Then x" andy" are martingales on the same space B" such that x" —n^2y" but not

The proof is straightforward.

Recall that Proposition 2.17 states that for each stochastic process x, the process

mx of Definition 2.16 is ^¡-Markov. We conclude this section with an example

showing that the processes «irx are not necessarily J^-Markov.

Example 3.4. A process x on an adapted space B such that for each r g N, »irx is

not ̂ ¿-Markov.

Begin with the adapted spaces B" of the preceding examples. Let ß = U„eNB".

Note that the sets B" are disjoint.

Let P be the probability measure on B such that for each «, each element of B"

has measure 2"3". That is, P(B") = 2" and all elements of B" have equal weight.



180 D. N. HOOVER AND H. J. KEISLER

Let !Ft be the o-algebra on B generated by U„eN^¡" and let x be the process on B

defined by

x(u,t) = x"(w,t)    if to G B".

Proof that mrx is not J^-Markov. By (3.2.2) and (3.2.3), for every conditional

process g of rank < r, and all to g Br+ l,

E[ gx'+1|J*r'](w) = E[g-xr] = £[g-.v1

and hence on B/+1,

£[gx|^](W) = £[g-xr].

Each coordinate of mrx(t) has the form E[gx\tF,\ for some g g G?0 of rank < r.

Therefore mrx(u, 1) has the same value for all to g ßr+1. By (3.2.4) there is a

conditional process / of rank r such that

a = E[fx'] + E[jy)-ß.

Moreover, by (3.2.3), on Br+1 we have

r i,    ^        Í «      if toil) = 1,

■    Bir*vt]M-{f if„J,J = 2.
Working on the space B we have for each to g Br+1,

ifto(l) - 1,r        ,     i,    , a     U tot 11 = 1,

By Corollary 2.13,/may be taken to be of the form

/=<p(£[g1|/1],...,£[gn|/„]),

where <p is a bounded continuous function and g,,... ,g„ belong to CPr0_,. Thus the

E[glx\^rl ] are coordinates of wrx(/,), and therefore there is a bounded continuous

function \p: (RN)n -* R such that

f+x = xp(mrx(tx + 2),...,mrx(tn + 2)).

Then for to g Br+1,

r . / ,m     l /    ,       Ia     if toil) = 1,
£[^(«irx(/1+2),...,Wrx(/„ + 2))|^1](to)= |^    ¡fw(i) = 2

This shows that mrx is not i^-Markov.   D

4. Complete and atomless spaces. It is easy to use the method of Maharam [1950]

to show that there exists a probability space B which has the following saturation

property (cf. Corollary 4.5): If x, is a random variable on B, and yx, y2 are random

variables on a probability space A such that x, and y, have the same distributions, in

our notation x, =0^1, then there is an x2 on B such that

(xx,x2)=0(yx,y2).

Our aim is to prove that there are adapted spaces with an analogous saturation

property for stochastic processes and adapted distribution (Theorem 5.2). In this
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section we introduce notions of rich adapted spaces necessary for these saturation

results.

Definition 4.1. An adapted space B is complete if for each countable FçR+ and

all stochastic processes x, y„, « g N on B such that y„ ( t ) is tight for all t g T and

(x,y„)^    onT,
ad

there is a stochastic process v on B such that

(*.y„)-*(*.y)  onT.
ad

Every finite adapted space is complete for trivial reasons.

We now show that nontrivial complete adapted spaces exist. The only method we

know of obtaining such spaces uses the Loeb measure contruction from nonstandard

analysis (see Anderson [1976], Keisler [1982], or Hoover and Perkins [1982] for the

necessary background).

Theorem 4.2. Every adapted Loeb space is complete.

Proof. Let

B = (B,^,P),e.R.

be an internal adapted space and let B = (B, ffi¡, P) be the Loeb space of B. That is

P = L(P) is the Loeb measure of P and Jf(P) is the set of null sets of P and

pt= no(f,)v4í),   tgr+.
°i>t

Let T ç R+ be countable and let x, yn be processes on B such that y„(t) is tight for

each / g T and

(x,y„)^    onT.
ad

It follows from results in Hoover and Perkins [1982] that

(4.2.1) &,= U»Wv/(f).
"ft

(4.2.2) For each bounded random variable z: B -» R, bounded lifting Z: B -» *R,

and u g *R+,

°E[z\9u)=E[z\a(9u)\    a.s.

(4.2.3) For each bounded random variable z: B -» R and / g R+, there is a

u G *R+ such that u » / and E\z\&,\ is o(9u) V JT(P)-measurable. Thus

(4.2.4) E[z|JT ] - E[x\a(%)]    a.s.

for all sufficiently large v » t.

Since any countable subset of the monad of / has an upper bound, it follows that

for each t g R+ there is a tx g *R+ such that tx = t and for each / g CP°, s in T,

and « g N,

(4.2.5) E[f(x,yn)(s)\<?l\=E{f(x,y„)(s)\a{9h)]    a.s.
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For each « G N and / g T, choose liftings A"(0 of x(t) and Yn(t) of y„(t). For

each /g CP°, s in T, and sx in *R+ with sx = s, let F(X, y„ )(?,): B -» *R be

obtained from/(x, y„)(s) by replacing x(t) by X(t), y„(t) by Yn(t), 3> by *4>, <p by

*<]P, and J5; by S?,. By (4.2.2) and induction on/, for each s g T we have

(4.2.6) °F(X,Y„)(sx)=f(x,yn)(s)    a.s.

for each/ G CP° and « g N. Extend the double sequence Y„(t), n g N, t g T to an

internal function y;(r), « g *N, í g *r.

Let Af be the Polish space of values for the processesy„(t). We shall now use the

tightness assumption to show that for all sufficiently small infinite H g *N and each

í G T, YH(t) is almost surely near-standard. Let p be a metric on M. Let t g T. For

each m G N, let Km ç. M be a compact set such that

Then for each « g N,

(4.2.7) P[*p(Yn(t),*Km) < 1/«] > 1 - 1/m

and thus (4.2.7) holds for all sufficiently small infinite « g *N. If *p(Yn(t), *Km) = 0

then Yn(t) is near-standard. By saturation, for all sufficiently small infinite H G *N,

Yff(t) is a.s. near-standard. Since Eis countable, for all sufficiently small infinite H,

YH(t) is a.s. near-standard for all / g T. We may thus define

yH(t)=°YH(t),     ter.

Since £[/(x, y„)(s)] converges, for each /g CP°, s in T, all sufficiently small

infinite H g *N, and all sufficiently large sx = s, we have

(4.2.8) "£ [F(X, YH)(*,)] =  lim £[/(*, A)(ï)l.
n—» oc

It follows that there is an infinite H g *N such that T//(0 is a.s. near-standard for

each / g T and there is a positive infinitesimal e such that for all/ g CP° and s g T,

(4.2.8) holds whenever sx ^ s + e and sx = s. e may be chosen large enough so that

whenever/ g CP°, s, t g T, and t + e < tx = r, (4.2.5) holds for all « g N and also

for « = //. Then (4.2.6) holds whenever/ g CP°, 5 in T, s + e < sx = ?, and « g N

or « = //. Therefore

(4.2.9) £[/(x, yH)(s)] =   lim £[/(x, ^)(ï)]
«->oc

for each/ g CP° and s in E. By Theorem 2.26,

(x, yn)-* (x, yH)   onT.   D
ad

Definition 4.3. Let (B, 3?, P) be a probability space.

(4.3.1) If j/, ^ are o-algebras on B and j/ç ^ ç J5", we say that ^ is atomless over

s/if for every £> g ^ such that P(E) > 0 there is D0 g ^, E0 ç E, such that on

some set of positive probability,

0 < P[ D0|o] < P[ D\a\.

A a-algebra is atomless if it is atomless over the trivial a-algebra.
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(4.3.2) We say 3 is ttx-atomless overs/ if 3 is atomless over every s/' ç Si which is

countably generated over s/, i.e. of the form s/ V "^with #countably generated.

(4.3.3) A probability space B = (B, &, P) is atomless, or Hx-atomless if !? is. For

example, given any probability space B with at least one set of measure different

from 0 and 1, the product space BN is atomless, and the product space BR is

S,-atomless.

(4.3.4) A filtration &„ t g R+, on (B, &, P) is said to be atomless if ^0 is

atomless, J^ is atomless over each &¡, and ^ is atomless over J^ whenever s < t.

The notion of an H,-atomless filtration is defined analogously. An adapted space B

is said to be atomless or #x-atomless if its filtration is atomless or 8,-atomless.

The necessary techniques for dealing with atomlessness were perfected in Maharam

[1942, 1950]. The essential facts are assembled in the following lemma.

Lemma 4.4. (i) // x is an M-valued random variable, then a(x) is atomless iff the

distribution of x has no point masses.

(ii) If 3 is atomless over s/ then 3 is atomless over every a-algebra 'ëç. 3 which is

finitely generated overs/.

(iii) Suppose 3 is atomless overs/. Let G be ans/-measurable random distribution on

M. That is, for each Borel set U c M, G(U): B -» [0,1] » s/-measurabie, G( 0 ) = 0,

G(M) = 1, and if U = \J„Un is a disjoint union then G(U) = T.„G(U„) a.s. Then there

is a 3-measurable random variable x such that

P[x g U\s/\ = G(U)    a.s.

for each Borel set U Q M.

(iv) If 3) is a a-algebra, s/and ^are sub-a-algebras of 3, Vis atomless, ands/and ^

are independent, then 3) is atomless overs/.

Proof, (i) If p[x = m] > 0 for m g M, then {x = m) is an atom of a(x).

Conversely, if A is an atom of a(x), and Un, « g N, is a countable basis for the

topology on M, then for each « g N, either x(A) g U„ a.s. or x(A) € U„ a.s. Since

M is Hausdorff,

n    uH
->c(/t)e [/„a.s.

must be a singleton {w}, and x(A) = m a.s., so m is a point mass of the distribution

of x.

(ii) Let 3) be atomless over s/, and suppose that # ç 3 is finitely generated over

s/. We may assume that "^is obtained by adjoining sets DX,...,D„ g 3tos/, where

{£,} forms a partition of B. Fix CeS, and / < « such that P[C n D,] > 0. We

may assume wlog that C ç D¡. Since 3 is atomless over s/, there is a set C0 ç C in 3

such that

(4.4.1) 0 < P[ CQ\s/\ < p[ C\s/\

on a set A e.s/ of positive measure. Then

p[Anc0] = fp[c0\s/} >0.
J A
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Now observe that any ^-measurable function must have the form L7_ig, • 1 (•£>,),

where the g, are ¿/-measurable. Hence if £ ç D¡, there is an ¿/measurable function g

such that P\F\^) = g ■ 1(E,). Then

P[F\s/\ = e[p[f\v\\*} = g-P[Z),|¿/].

Since P[D,\s/) > 0 a.s. on £>,, it follows that for any E c D¡,

(4.4.2) P[ F]V] = 1(D¡) • P[ F\s/]/P[ D\s/\    a.s.

Then almost surely on £>,,

P[ C0\<#] = P[ C0\s/]/P[ D,\s/\,    P[ C\V] = P[ C\s/]/P[ D,\s/\.

By (4.4.1), it follows that

0 < P[ C0\V] < P[ c\v]

almost surely in A n D¡. By (4.4.1) and C ç D„ P[A n D,] = E[P[D,\s/] ■ 1(A)] >

0. This shows that 3 is atomless over c€.

(iii) By Maharam [1950, Lemma 3, p. 146], if 3 is atomless over s/, then for any

¿/-measurable/: B -* [0,1], there is D g ^such that P[D\s/]= /a.s. Let {/„, « g N,

be a countable basis for the topology on M. Using (ii) and Maharam's Lemma,

inductively define DX,D2,D3,... in 3 so that

P[z>,|¿/] = G(UX)    a.s.,

G(UXC\U2)/G{UX)     onDx,
P\ D2\s/(DX)} = .

I    2i i/j      \g(U{ D U2)/G(UXC)    onE[,

and in general

P[Dn + x\*(Dx,...,Dj} = G{pi^;-U")n"r>)     on p(Dx,...,Dn)
1    "+"    v   ' "n G(p(Ux,...,Un)) ' "'

for each Boolean expressionp( Xx.Xn) of the form Yx n ■ • • n v„, where each Y,

is either X: or A1/. One may check by induction that for each « and p,

p[p(Dx,...,Dn)\s/] =G(p(Ux,...,Un))    a.s.

Let x be an M-valued random variable such that {x g U„} = Dn a.s. for each n. For

each finite m it is easy to find xm that satisfies this for each of Dx,...,Dm; these

converge a.s. to the desired x. Then for each Borel set U ç M,

P[ x g U\s/] = G(U)    a.s.

(iv) Choose any D g 3 such that P(D) > 0. By (iii), there are CX,...,C„ e tf

forming a partition of B such that

0 < P(C,) < ?P(E)    for each i.

Then for each /,

P[ C, O D\s/\ < P[ C\s/\ = P(C,) < ^P(Z))    a.s.,
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the equality holding since #and ¿/are independent. Now [P[D\s/] > jP(D)} has

positive measure, and since UC, = B, for some i, P[C, n D\s/\ must be positive on a

nonnull subset of this set. Therefore

0 < P[ C, D D\s/] < P[ D\s/\

on a set of positive measure. Thus 3 is atomless over s/.   D

Corollary 4.5. (i) A necessary and sufficient condition for a probability space

B = (B, F, P) to be Rx-atomless is that for all random variables x, on B andyx, y2 on

another space A = ( A, 'S, Q) with xx = 0/1 (i.e. xx andyx have the same distribution),

there is a random variable x2 on B with

(x,,x2) *0(y1,y2).

(ii) Let B be an adapted space such that Fis üx-atomless. Then for all processes right

continuous in probability x, on B andyx, y2 on A with x, —0yx there is a process right

continuous in probability x2 on B with

{xx,x2)=0{yx,y2).

Proof, (i) The sufficiency follows from 4.4(iv). We prove the necessity. Let yx, y2

have values in the Polish spaces MX,M2. For each Borel set U Q M2 there is a Borel

function

gu:Mx^[0,\]

such that in A,

Q[^e i/bi] =gu(yt)  a.s.

Since^is N,-atomless and a(x,) is countably generated, ^is atomless over a(xx).

By Proposition 4.4(iii) there is an x2 on B such that for each U,

P[x2 g U\xx] = gL,{xx)    a.s.

Then

P[(x!,x2)g Ux X U2] = /p[x2g Í72|x,] -l{x, G í/j} dP

=  /gí;¡(x1)l{x1G   Ux}dP

= fgvÁyi)-nyx^ux}dQ

= Q[(yt^y2)^ ux x u2],

so(xx,x2)=0(yx,y2).

To prove (ii), replace each processes z(t) by the random variable (*('/): ' e Q + )-

D

Corollary 4.6. Atomless complete spaces exist.

Proof. It follows by 4.4(i) and (iv) that any adapted space B which carries an

^j-Brownian motion is atomless. By Proposition 4.2 any adapted Loeb space which
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carries an J^-Brownian motion is atomless and complete. Such spaces exist by

Anderson [1976].   D

Completeness has the effect of strengthening atomlessness.

Proposition 4.7. If an adapted B is complete and atomless, then it is Hx-atomless.

Proof. We shall show that whenever s < t in R+, Ft is Sratomless over Fs.

Suppose s/c J5; is countably generated over J^. Let x be an .^-measurable random

variable such that ¿/= Fs(x), and let x„, n g N, be real-valued random variables

such that each a(xn) is finite and contained in a(x), and

(4.7.1) x„ -* x   a.s.

By 4.4(h),Ft is atomless overFt_x/n(xn) for each n. Then by 4.4(iii) we may choose

^¡-measurable random variables un which are uniformly distributed over [0,1] and

independent ofFt_x/n(xn). Let x, x„, w„ be the constant stochastic processes

x(r) = x,   x„(r) = x„,   û„(r) « «„,

and let T = Q + - {/}. One can show by induction on rank that

(4.7.2) (xn,û„)-*     onT.
ad

By (4.7.1) and Lemma 2.19,

(4.7.3) (x,ûn)^    onT.
ad

The sequence (x, ûn)(r) is tight for each r.

By completeness of B there is a process v on B such that

(4.7.4) (x,û„)-*(x,v)    onT.
ad

By (4.7.1) and 2.19,

(4.7.5) (x„,û„)-*{x,v)    onT.
ad

Since each û„ is contant on T, v is a.s. constant on T, so we may take v to be of the

form û for some random variable u on B. Since each un is J^-measurable, u must be

.^-measurable. Similarly, since un is independent of ^(xn) for 1/« < t - , u is

independent of s/= Fs(x). Since each u„ and hence u is uniformly distributed over

[0,1], a(u) is atomless. Then by 4.4(iv), F, is atomless over¿/, and hence K,-atom-

lessover^.

The proofs that FQ is K, atomless, and that Fx is W,-atomless over each fFs, are

similar.   D

5. Saturated adapted spaces. In this section we prove the main theorem of the

paper, which says that complete atomless spaces possess a saturation property with

respect to adapted distribution. In particular, any system of processes can be

duplicated, up to adapted distribution, on any complete atomless space. The

saturation property is the most powerful tool in dealing with adapted distributions.
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Definition 5.1. An adapted space B = (B, P, J^)r(ER* is universal if for every

Polish space M and every stochastic process

(y)-(A,Q,W„y)imr

with values in M there is a stochastic process x on B such that x = y. B is saturated if

for every stochastic process x,, on B, adapted space A, and stochastic process

(y\' yi) on A sucn mat x, = yx, there is a stochastic process x2 on B such that

(x,, x2) = (yx, y2). Thus every saturated adapted space is universal.

Theorem 5.2. An adapted space is saturated if and only if it is complete and

atomless. Hence there exists a saturated adapted space.

We shall omit the easy proof that every saturated space is complete and atomless.

We prepare the proof of the other direction with a series of lemmas.

Definition 5.3. Let x be r.c.1.1. process on B and let £ be a finite or countable

subset of R+. The stochastic process

mTx: (R + U{oo}) X B-» RN

is defined as follows:

wrx(oo) = </x(?):/GCP°,?in£>,

mTx(t) = E[mTx(ao)\&,],       t G R+.

Lemma 5.4. mTx is a martingale (in each coordinate) and a Markov process with

respect to (B, P,^,),eR^u{ao).

Proof. Argue as in Proposition 2.17.   D

Lemma 5.5. The following are equivalent for finite or countable T ç R+.

(i) x = y on T.

(ii) wrx(oo) and mTy(cc) have the same distributions.

(iii) mrx =0«irv on T U {oo}.

(iv) «irx =0mTy on T.

Proof. The implications (i) -» (ii) -» (iii) -» (iv) are obvious. The proof that

(iv) -* (i) is like the proof of Proposition 2.18.   D

Lemma 5.6. Let T c R+ be countable, let z: (T U {oo}) X B -» RN be a martingale,

and let y be an M-valued stochastic process.

(i) If(x, z) = 0(y, m1', y) on £U {oo}, then z - mTxa.s.for all t eiU {oo}.

(ii) Suppose z =0mTyonT U {oo}. Then there is a stochastic process x: TX B -» M

such that z = mTx a.s. for all t g T U {oo}.

Proof, (i) One shows by induction on formation that for/ g CP° and j,(£ T u

z/(7)(oo)=/x(?)a.s.,   zf(7)(t) = E[fx(s)\&,] a.s.

(ii) For each <p g S„, and sx,...,s„ g T, <p(y(sx),...,y(sn)) is a coordinate of

«^(oo).
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Define $: M -* RN by Q(y) = (fp(y))veSi. Then $ is a Borel isomorphism of M

onto a Borel subset of RN by the Souslin-Lusin Theorem. (Dellacherie and Meyer

[1978, p. 49—III]). Applying <t>-1 to the appropriate coordinates of «^(oo) we

obtain a Borel function xp: RN -» M such that

iy(t):teT)-1>{mTy(co)),

Letx: Ex B -» M be defined by (x(t): t g T) = >j>(z(oo)). Then

(x,z) =0(.y, mTy)   on£u{oo},

and it follows by (i) that z = mT(x) a.s.   D

We now show that N,-atomless spaces satisfy the saturation property for finite

sets T.

Lemma 5.7. Let B be #x-atomless and let IcR4 be finite. For all stochastic

processes x, on B and yx, y2 on another space A such that x, = yx on T, there is a

stochastic process x2 on B with (xx, x2) = (yx, y2) on T.

Proof. Let T= {/,,...,/„} with tx< ••• < tn. It suffices to prove the result

when x,, yx, and y2 are random variables, because a stochastic process u may be

replaced by the random variable (u(tx),...,u(tn)). By Lemma 5.5, mTxx =0mTyx on

TU {oo}.

Put r„ + , = oo. We prove by induction that for each k ^ n + I there is a

martingale z(tx),... ,z(tk) on B such that

(5.7.1) (mTxx,z)=Q{mTyx,mT(yx,y2))    on {tx,...,tk}.

Let us first show that if (5.7.1) holds for k = « + 1 then the lemma is true. Assume

(5.7.1) for k = n + 1. By Lemma 5.6 there is a random variable u on B with

z(oo) = mTu(oo) a.s. Using (5.7.1) again we find that there is an x2 on B with

u = (x,, x2) a.s. By Lemma 5.5 it follows that

(xx,x2) = (yx,y2)    onT.

We now prove (5.7.1) when k = \. Since IF, is X,-atomless and mTxx(tx) is

Ft -measurable, Corollary 4.5 shows that there is an F, -measurable z(tx) on B such

that

(mTxx, z) =0(mTyx, mT(yx, y2))    on {/,}.

Now let 1 < k < « + 1 and assume there is a martingale z(tx),...,z(tk) which

satisfies (5.7.1) for k. To simplify notation let í = tk,t = tk + x,xx = mTxx,yx = mTyx,

y2 = mT(yx, y2). Letyx,y2 take values in MX,M2.

We show first that

(5.7.2)

(xx(tx),...,xx(tk + x),z(tx).z(tk))=0{yx(tx),...,yx(tk + x),y2(tx),...,y2(tk)).

Since x, and y2 are Markov processes, for each <¡p g C(A/,,R) there is a Borel

function / : Mx -» R such that

E[<P(M'))\9,\ -/,(Ä(*))-^[?(>»i(0)|(J>(i|).Ä('/))/<J    a.s.,
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and

E\<p{xx(t))\F] = fv(xx(s)) = E[<ç{xx(t))\{xx(t,), z{t,))lKk]    a.s.

Condition (5.7.2) now follows. For each Borel set V ç. M2, let

gu: Mx X M2 ^ [0,1]

be a Borel function such that

P[y2(t) e U\(yx(t), y\(s))\ = gy(A(0. A(*))-

Since a(xj(0) is countably generated,^ is atomless over^x^O)- By Proposition

4.4(iii) there is an immeasurable random variable z(t) on B such that for each Borel

set U c M2,

P[z(t) g U\Fs{xx(t))\ = gu{xx(t), z(s))    a.s.

Then

P[z(r)G U\(x(tx),...,xx(tk + X),z(tx),...,z(tk)} = g[/(x1(/),z(s)),

and

p[y2(')^ u\(Mti)>---,Mtk+i)>Mhh'-M'k))] ^guiM'),^))-
It follows that

(xi,z)=Q{yx,y2)   on{tx,...,tk + x),

that is, (5.7.1) holds for k + 1.

It remains to show that z is a martingale on {/,,...,tk +,}, that is,

E[z(t)\F]=z(s)    a.s.

In the following computation we use the fact that since xx is J^-Markov and

a(xx(s)) Q a(z(s)) Q Fs,

E[h(xx(t),z(s))\F]=E[h(xx(t),z(s))\z(s)\

for any Borel «: Mx X M2 -» Mx. By definition of z(t) there is an « such that

s[A(')|(A(0, A(*))] = *(A(0. At*))  a.s.

and

îN')|^('))]-»W').^))    a.s.

Then

£[*(A(').A(*))|A(*)]-*[A(0|A(*)] -A(*)  a.s.

By (5.7.2) and the above,

E[h(xx(t),z(s))\z(s)]=z(s)    a.s.

Then

£[z(/)|^] = e[£[z(0|^(A(0)]|^]

= E\h{xx(t),z(s))\F]

= E[h{xx(t),z{s))\z(s)]= z(s)    a.s.    D
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Proof of Theorem 5.2. Let B be a complete atomless adapted space, and let A be

some other adapted space. Let X! be a stochastic process on B and (yx, y2) a

stochastic process on A such that x, * yv We show that there is a stochastic process

x2 on B such that (x,, x2) = (yx, y2).

Case 1. x,, yx, and y2 are r.c.1.1. processes. Let Tx Q T2 c • • • be an increasing

chain of finite subsets of R+ such that T = U„£„ is dense. By Proposition 4.7, B is

8,-atomless. By Lemma 5.7, for each « there is a stochastic process x2 on B such

that

{xx,xï)= (yx,y2)    on£„.

Since each finite t in T belongs to some £„, it follows that

{xx, xi) ^ (yx, y2)    onE.
ad

Then there is a stochastic process u on B such that

(x,, x2) -* (xx, u)   on T.
ad

It follows that (x,, u) = (yx, y-,) on T. Since u =0yi on T, we may define x2 on B

by

x2(/) = lim u(s)    a.s.

jer

x2 = u on T, so (x,, x2) s (yx, y2) on T. Moreover, x2 is r.c.1.1., so by Corollary 2.13

we have (x,, x2) * (yx, y2). This proves the result in Case 1.

We now turn to the general case. By Proposition 2.24 there are r.c.1.1. processes wx

on B and (z,, z2) on A and Borel functions <p,, <p2 such that wx = z, and for all

t G R +

xx(t) = <px{wx(t)) a.s.,   yx{t) = <px(zx(t)) a.s.,   y2(t) = <p2(z2(t)) a.s.

By Case 1 there is a w2 on B such that (wx,w2) = (zx,z2). Definex2 on B by

x2(t) = <p2(w2(t)),       ,GR + .

It follows that

(<Pi(wi), <p2(w2)) = (qpi(z,),(p2(z2)),

so(x!,x2) = (yx,y2).   □

Corollary 5.8. // B is saturated then it has the saturation property for r.c.1.1.

processes, that is:

If x, is an r.c.1.1. process on B, (yx, y2) is an r.c.1.1. process on A, andx, = yx, then

there is an r.c.1.1. process x2 on B such that (x,, x2) = (yx, y2).

Proof. This was proved in Case 1 of the proof of Theorem 5.2.   D

The next result show that saturation for = implies saturation for * a.e.

Corollary 5.9. // x, is a process on a saturated adapted space B and yx, y2 are

processes on an adapted space A such that x, = yx a.e., then there is x2 on B such that

(5.9.1) {xl,x2)m(y.,y2)    a.e.
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and

(5.9.2) x2=y2.

Proof. By Corollary 2.23 there are x'x on B and y'x on A such that

x\ =x1a.e.,   y[ = j, a.e.,   x'x = y{.

Since B is saturated there is x2 on B such that (x{, x2) = (y'x, y2). Then (5.9.1) and

(5.9.2) hold for xx,x2,yx,y2.   □

Corollary 5.10 (Amalgamation theorem). Let x,, yx be stochastic processes on

an adapted space A,, and let (y2, z2) be processes on an adapted space A2 such that

yx = y2. Then there is an adapted space B with stochastic processes x, y, z such that

(x, y) = (x,, yx) and (y, z) = (y2, z2). The same holds with = a.e. instead of = . If

xx,yx,y2, andz2 are r.c.1.1., then x, y may be taken to be r.c.1.1.

Proof. Take a saturated space for B. Choose (x, y) so that (x, y) = (xx, yx).

Then choose z so that (y, z) = (y2, z2). By Corollary 5.9, the same can be done with

= a.e. instead of = .   D

We will now prove some results which are in a sense converse to Theorem 5.2 and

Corollary 5.10. They assert that ■ is the weakest reasonable equivalence relation on

stochastic processes for which a certain amalgamation theorem holds or for which a

saturated space exists. In these results we will allow stochastic processes to have

parameters either inR+orR+U{oo}.

Theorem 5.11. Let - and ~ be equivalence relations on stochastic processes, and

suppose these relations have the following properties:

(1) x ~ y implies x = 0 y.

(2)If(xx, yx) « (x2, y2), thenyx = y2.

(3) = preserves the martingale property.

(4) Given (xx, yx), (x2, z2) such that xx — x2, there is a process (x, y, z) such that

(x, y) = (xx,yx)    and   (x, z) = (x2, z2).

£«e« x, - x2 implies x, ■ x2.

Proof. Supposexx - x2and, by (4), choose(x, y, z) such that (x, y) = (x,, mTxx)

and (x, z) » (x2, mTx2), where T is any countable subset of R + U {oo}. By (2) and

(4), x, = x2. By (2) and (3) y and z are both martingales, so by (1) and Lemma

5.6(i), both are versions of mTx. By Lemma 5.5, x, ■ x2 on T. Since T was any

countable subset of R + U {oo} we must have x, = x2.   D

It follows from this theorem that the amalgamation property (4) cannot hold when

- is =„ and = is =,, for any finite «.

Theorem 5.12. Let —  be an equivalence relation on stochastic processes having

properties (1) and (2) of Theorem 5.11 and also the following property:

(3') Ifx=y and x is adapted then y is adapted.



192 D. N. HOOVER AND H. J. KEISLER

Suppose B, and B2 are spaces having the following saturation property:

(4') Whenever (zx, vx) are processes on B, and(x2, w2) are processes on B2 such that

z, = z2, then there are processes v2 on B2 and wx on B, such that (z,, vx) ~ (z2, v2)

and(zx,wx) = (z2,w2).

If x is a process on Qx, y a process on B2 such that x ~ y, then x = y.

Proof. Let x = y be processes as in the hypothesis. Choose z on Bj so that

(x, z) = (y, mTy), T a countable subset of R+U{oo}. If we show that z is a

martingale, then it will follow as in 5.11 that x = y. Suppose z is not a martingale.

Then there are tx, t2 g R + u {oo }, tx < t2, and E G F^ such that

(5.12.1) E[z{tx) • 1(E)] #£[z(r2)- 1(E)].

Let o be the process

,   v        /0, '<*!,

By (2) and (4'), choose w such that (z, v) « (w7^, w). Then by (1), there is a set G

such that

Í0, t < tx,

w(')=\l(G),    i>/,a.s.

By (2) and (3'), G g F*. But then by (5.12.1) and (1),

E[mTy(tx) • 1(G)] = E[z(tx) - 1(E)] * £[z(,2) ■ 1(E)] = E[mTy(t2) ■ 1(G)].

But this is impossible, since mTy is a martingale. Hence z must indeed be a

martingale.   D

6. Application to semimartingales. Let x be a local martingale on some adapted

space A. In this section we shall show that if x is an r.c.1.1. process on a saturated

space and x has the same adapted law as x (i.e. x = x) then x is a local martingale.

The first author has in fact shown that the local and semimartingale properties are

even preserved under synonymity. We include the weaker results in this section as a

first example of a general method using saturated spaces. As an application we

improve a result of Barlow [1981] and Perkins [1982] on local martingales with

prescribed absolute value. The results and methods of this section will be applied to

stochastic integral equations in §7.

We first state the definition of local martingale (see Kussmaul [1977]).

Definition 6.1. A stochastic process x with values in R is a local martingale if x is

adapted and there is a sequence t„, « g N, of stopping times such that t„ in

increasing lim,,^^ t„ = oo a.s., and for each « the stopped process x(t„(w) a /, to)

- x(0, to) is a uniformly integrable martingale. In this case we shall say that the

sequence t„ reduces x.

Each local martingale is a right continuous left limit process.

THEOREM 6.2. Let x be a local martingale on some space A and x a right continuous

left limit process on a saturated adapted space B. If x has the same adapted law as x,

then x is a local martingale.
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Proof, x is a right continuous left limit adapted process. Let t„, « g N, be a

sequence of stopping times on A which reduce x, that is,

(6.2.1) t„ -» oo   a.s.

(6.2.2) E{x(t„ A t)\&s) = x(t„ A s)   a.s. when í < i,

Uniform integrability: for each n g N,

(6.2.3) lim £[|x(t„ A /)| ■ l,,(r#A,)l>)B] = 0
m -* x

uniformly in t. (Ia is the indicator function of U.)

For each « G N, let z„ be the indicator function of t„ < t, that is

f\      ifT»<f,

The paths of zn are right continuous step functions.

Since B is saturated and x = x, there are processes z„, « g N, on B such that

(6-2.4) (x, z„)neN = (x, zJneN.

By the remark following Corollary 2.15, the z„ may be taken to have paths which are

indicator functions of intervals of the form [0, t) . Now using only the synonymity

relation

(6.2.5) (*.*«)««m"i(*.*ii).«n

we shall show that x is a local martingale on B.

Since x and z„ are adapted, x and zn are adapted by (6.2.5). It follows that for

each « there is a stopping time in on B such that

By (6.2.5) and t„ -» oo a.s., we have t„ -» oo a.s. Properties (6.2.2) and (6.2.3) for x

and f„ follow easily from the synonymity (6.2.5) and the corresponding properties

for x, t„. Thus fn reduces x, and x is a local martingale.   D

Using the above result we now prove the analogous theorem for semimartingales.

Definition 6.3. Let x be a stochastic process with values in R''. x is a process of

bounded variation if almost every path of x is r.c.1.1. and of bounded variation on

each interval [0, /]. x is a semimartingale if x can be written as a sum x = m + v,

where m is a local martingale and v is an adapted process of bounded variation. A

sequence of stopping times t„ is said to reduce x if it reduces m. Note that every

semimartingale is a right continuous left limit process.

Lemma 6.4. If x is a process of bounded variation and y is an r.c.1.1. process such

that x = 0 y, then y is of bounded variation.

Proof. The variation process var(x) of the process x is given by

var(x)(i)=  hm     £     x-)-x  -   .
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As the same is true of y, and x =0y, var(x) =0var(>>). Since var(x)(r) is almost

surely finite for all t, so is \ai(y). Since vai(y) is increasing, this implies that y is of

bounded variation.   D

Theorem 6.5. Let x be a semimartingale on some adapted space A and x an r.c.1.1.

process on a saturated adapted space B. If x has the same adapted law as x, then x is a

semimartingale.

Proof. Let x = «7 + v, where m is a local martingale and v is a process of

bounded variation. Choose m and v on B such that

(x, m, v) s (x, m, v),

and m, v are r.c.1.1. By Lemma 6.4, v is of bounded variation, and by Theorem 6.2, m

is a local martingale. Since x = m + v we have x = m + v a.s., whence x is a

semimartingale.   D

Lemma 6.6. For every semimartingale x there is an increasing sequence of stopping

times rn such that t„ reduces x and \x\ is bounded by « on [0, t„ ) .

Proof. Let an be an increasing sequence of stopping times which reduces x. Let

Tn = an a inf{r: \x(t)\>n).

Then t„ is a stopping time and |x| is bounded by « on [0, rn) . Since a„ -* 00 a.s. and

the paths of x are right continuous with left limits, t„ -» a.s. Moreover, t„ < an, and

hence in reduces x.   D

Theorem 6.7. Let x be a semimartingale and rn an increasing sequence of stopping

times on an adapted space A, and x a semimartingale and rn an increasing sequence of

stopping times on a saturated adapted space B, such that

(JC'1[0.T„))neN=(^'1[0.T"„,)neN.

Then:

(i) //t„ reduces x, then f„ reduces x.

(ii) If x is bounded by bn on each interval [0, t„ ), í«e« x is almost surely bounded by

bn on each interval [0, t„ ) .

Proof. Let x = m + v,x = m + v, where m, m are local martingales and v, v are

of bounded variation and

(x,m,v,{l[0.rl,))neri)^(x,m, v,{\0.0)„.„)•

Suppose Tn reduces m. Then by the proof of Theorem 6.2, f„ reduces m. Suppose,

finally, that x is bounded by bn on each interval [0, t„) . That is, x • 1[0 Tj < bn.

Then

x • l[0.fj < b„   a.s.   D

A submartingale is an r.c.1.1. adapted process x such that whenever x < t,

E[x(t)\Fs] 35 x(s) a.s. The definition of a local submartingale is analogous to the

definition of a local martingale. By essentially the same proof, we obtain an

analogue of Theorem 6.2 for local submartingales.
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Theorem 6.8. Let x be a local submartingale on some space A and x be an r.c.l.l.

process on a saturated space B. // x has the same adapted law as x then x is a local

submartingale.

As an application we improve a result of Perkins [1982] and Barlow [1981] on

martingales with a given absolute value. The improvement we obtain is the follow-

ing. The result holds with or without the word "local".

Theorem 6.9. Let B be a saturated adapted space. For every nonnegative (local)

submartingale x onQ there exists a (local) martingale monü such that

|«j(to, -)| = x(to, •)   a.s.

Corollary 6.10. Let Qbe a saturated adapted space. For every nonnegative (local)

submartingale y on an arbitrary space A there exists a (local) martingale m on B such

that \m\ = y.

We now state the result of Perkins [1982] and obtain Theorem 6.9 as a conse-

quence. Perkins constructed a pair of saturated adapted spaces

tf-ÍO1.*1.^1),«-.   B2 = (B2,P2,J^)/eir

and a mapping m: B2 -» B1 with the following properties:

(a) For every nonnegative (local) submartingale x on B1 there is a (local)

martingale m on B2 such that

|m(to, -)| =x(vu, ■)    a.s. (P2).

(b) ir-\&£) £ Fj and »-l(J?) £ F,2 for all t g R+.

(c) it'1 is measure-preserving.

(d) For every random variable u: B1 -» R+ on B1,

e[ u\F,l](iru) = e[ «°7r|J^2](to)    a.s. (P2).

To prove Theorem 6.9 let x be a nonnegative (local) submartingale on B. Since B1

is saturated and x is right continuous there is a process x on B1 such that x = x and

x is right continuous. Moreover, x is a nonnegative (local) submartingale by

Theorem 6.8. Let z be the process on B2 defined by z = x ° tr, i.e.

Z(t0, t) = x(7TtO, /)•

Using properties (b), (c), (d), it can be shown that for every conditional process/(i),

/z(7)(«)=/x(7)(™)    a.s.(P2).

The main inductive step, for conditional expectations, uses (d). It follows that

£[/¿(01 = E[fx(t)l and therefore z ■ x.

Now consider the (local) martingale m in condition (a) and form the joint process

(m, z). By saturation of B there is a right continuous process m on B such that

(m, z) = (m, x). We have |w(/)| = z(t) a.s. and hence \m(t)\ = x(t) a.s. for all

t G R+. By Theorem 6.2, m is a (local) martingale on B, as required.   D
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7. Application to stochastic integral equations. In this section we consider stochas-

tic integrals and stochastic integral equations with respect to a semimartingale.

Given a solution x to a stochastic integral equation £ on some adapted space A, we

shall show that on a saturated space B, any stochastic integral equation £ whose

coefficients and semimartingale have the same adapted law as those of £ has a

solution y with the same adapted law as x. Thus on saturated spaces, the existence of

a solution, and the uniqueness of the adapted law of a solution, depend only on the

adapted laws of the coefficients and of the semimartingale.

We begin with the relevant definitions.

Definition 7.1. The predictable (or previsible) a-field on an adapted space

B = (B, P, T,),eR- is the a-field on B X R+ generated by all sets of the form

[0,t] = {(w,î):0</<t(«)}

where t is a stopping time. A stochastic process x on B is predictable if it is

measurable with respect to the predictable a-field.

Definition 7.2. A basic predictable process is a finite linear combination of

indicator functions

a\   ■   1[0.T,] + a2"   1(T,.T2]+     •••   +  a„-   1(T„.,.T„]

where t,,. .. ,t„ are stopping times, a,,... ,an are real numbers, and (a, t] = {(to, t):

a(to)*s t < t(0}-

The basic predictable processes form a vector space closed under the minimum

operation / A g. It follows from the monotone class theorem that the closure of the

class of basic predictable processes under bounded monotone convergence is exactly

the class of bounded predictable processes. Thus h is bounded predictable process if

and only if there is a sequence «„of basic predictable processes and a bounded Borel

function <p: RN -» R such that for all t and to,

h(t,a) = <p{{hn(t,u))„sN).

The stochastic integral of a bounded predictable process with respect to a

semimartingale may be defined as follows. We could consider the more general case

of integration of a predictable process which is locally integrable with respect to a

semimartingale m, but the additional technical complications would obscure our

exposition. All our results are proved for one dimension but generalize readily to d

dimensions.

Definition 7.3. The stochastic integral is the unique function assigning to each

bounded R-valued predictable process « and R-valued semimartingale m a right

continuous left limit R-valued process ¡¿h dm such that

(7.3.1) /o« dm is linear in both h and m.

(7.3.2) If t is a stopping time then /o'l(o.T] dm = m(r A t).

(7.3.3) If «¿ is a bounded monotone sequence of predictable processes converging

to h, then

f « dm =   lim   f hk dm
■'0 k — oo ■'0

in probability.
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The stochastic integral can be shown to exist and to be unique up to indis-

tinguishability.

For the remainder of this section let B = (B, P, F,)IBR* be a saturated adapted

probability space and let A = ( A, Q, ^,),eR* be arbitrary.

Lemma 7.4. Let h be a basic predictable process on A and let h be a process on B

such that h =xh. Then h has a version g which is a basic predictable process.

Proof. Let

" " ai ■ Vt,] + a2-\ (T,,T, j + • • • + an ■ 1 (Tii_,.Tn |.

Then the paths of « are left continuous step functions with values at a,.<z„. By

the remark following Corollary 2.15, since « =0h, h has a version g whose paths are

also left continuous step functions with values at ax,... ,a„. Then h =xh, h =xg. It

follows that the steps of g occur at stopping times, so g is a basic predictable process.

D

Theorem 7.5. Let h, z, m be processes on A, and h, z, m be processes on B such

that:

(i)(h, m,z)= (h, m,z).

(ii) h and h have values in RN and all coordinates «,, and nn are basic predictable

processes.

(iii) m and m are semimartingales. Then for every bounded Borel function <p:

RN -* R we have

yh,m, z. J <p(«) dm\ ■ \h,m, 2, j<p(h) dm\.

Proof. If <jp depends on finitely many coordinates, then <p(h) is basic and the

result is clear. A monotone class argument together with (7.3.3) and Proposition 2.20

now completes the proof.   □

It follows from Theorem 7.5 that if «, h are real predictable processes such that «

is predictable and («, m) = (ii, m), then h has a predictable version h such that

/ h dm — I h dm,

but in general we need not have jh dm =0 jh dm even when h is predictable.

We conclude this paper with an application to stochastic integral equations.

If x(t, to) is an r.c.1.1. process, the process x(t-, to) is defined by

Í limx(i, to)    if l > 0,
x(/-,to)=     >1>

(x(0,to) if, = 0.

Lemma 7.6. If x(t, to) is an adapted r.c.1.1. process, then x(t-, u) is predictable. In

fact, if S is the Polish space of r.c.l.l. functions from R+ into Rd, there are Borel

functions

6:S^S™,   ^:(If)N-If
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such that for each adapted r.c.l.l. process x(t, to), each coordinate 6n(x)(t) is a basic

predictable process and for all t,

x(i-)-*(«(*)(*))■

Proof. For «eR^let /„(«) be the greatest (l/«)-lattice point which is < u in

each coordinate. Given an r.c.l.l. function x and positive integer p, define points tfi,

rf,..., as follows.

'o = °<    'f+i = least t > tf such that \\x(t) - x(tf ) || > \/p.

This sequence {tf} is obtained as a Borel function of x. Let ( • , • ) be a bijection of

N2 and N. Define 0„, « G N, by

9<p,q,(x)(0) = lq(x(0)).

For t > 0,

e(P.ç)(x)(t) = /,(*(»,))    for t g [t„ t¡ + x], i < p,

= lq{x{tp)),       t>tp.

Then each 6„ is a Borel function from D to the space of left ' continuous step

fucntions, if x is adapted then 6„(x) is basic predictable, and if

xp(y„:n G N) =  lim   lim y(    >,
p->x q->x

then x(t-) = xp(6(x)(t)) for all t.   D

Definition 7.7. Let m be a semimartingale on A, and let / be a bounded

measurable function ((R + x A) x R, 9* x 98) ^> (R, 98). Let x0 be a random varia-

ble on A. By a solution of the stochastic integral equation

(7.7.1) x{t, a) = x0(to) + / f{s, u, x(s-, to)) dm{s, to)
■'o

we mean an adapted r.c.l.l. process x on A such that the equation (7.7.1) holds

almost surely.

The process f(s, x(s-)) is predictable for the following reason: By Fubini's

Theorem, any / as specified must have the form

/(*, to, r) = *(*„(*, «)«„(r))

where for each « g N, gn is basic predictable, h„ is continuous, and xp: RN -» R is a

bounded Borel function. Since x(/-) is predictable, so is gn(t)hn(x(t-)). Hence

f(s, x(s-)) is predictable.

Theorem 7.8. Let f, m, z, x be processes on A andf, m, z processes on B such that

(i)(f,m,z) = (f,m,z).

(ii) fis a sequence of processes ( /„: « G N),/„: R + X B X R -> R where for each «

fn(t,u,r) = gn(t,u>)hn(r),

gn: R+X B -» R being basic predictable, and «„: R -» R being continuous. The

analogous statement holds for f.

(iii) m and m are semimartingales.

(iv) <p: RN -» R is a bounded Borel function.
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(v) x is a solution on A of the stochastic integral equation

x(t) - x(0) + f(<p o/)(s, x(s-)) dm(s).

Then there is a solution x on B of

xU)-x(Q)+Î'(vî)(s,x(s-))M(s)
Jo

such that (f, m, z, x) = (f, m, z, x).

Proof. By saturation there is an r.c.l.l. process x on B such that (f,m,z,x) =

(f,m,z,x). We will show that x is the desired solution. Let 6 and \p be the Borel

functions introduced in Lemma 7.6, so that 8„(x) and 6„(x) are basic predictable

processes and

x(t-) = xp(6(x)(t)) =  Um6n(x)(t),
n-'x

x(t-) = xKe{x)(t))= \imen(x)(t).
n — x

Then fk(On(x)) andfk(6n(x)) are basic predictable processes and

( fÁen(x)), m, z, x)¿ „eN = (Á(0„(x)), m, z, x)knmH.

By continuity off, fin the last coordinate,

/,(x(r-)) =  hm fk(On(x)(t)) = i(fk(6(x)(t))),
n->oc

h(x(t-)) =  hm fk{6n(x)(t)) = xp{fk($(x)(t))).
n-* x

Hence

(»•/)(L*(H)-(f-+)(/M(*)(0)).
(f/)(í.i(í-))-(f*)(/(í,#(i)(0)).

Hence by Theorem 7.5,

(/, m, z, x, x(0)+j\fpof)(s, x(s-)) dm(s)\

m (/, m, z, x, x(0)+f'(<p°f)(s, x(s-)) ék(s)\.

Thus, since x is a solution of the stochastic integral equation and x is an adapted

r.c.l.l. process, x is a solution of the corresponding equation.   D

The following two corollaries adapt Theorem 7.8 in order to show directly how a

stochastic integral equation and its solution may be transferred to a saturated space.

Let 9a denote the predictable a-algebra, 98 the Borel sets.

Corollary 7.9. Let h,m, z, and x be processes on A and m and z be processes on B

satisfying:

(1)«:R+xAxR->R/s bounded and & X ^-measurable.

(2) m is a semimartingale.

(3)(m,z)-(*,*).

(4) x, = x0 + f¿h(s, o, xs_) dzs.
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E«e« there exist h and x on SI such that:

(l)' Â:R + XQXR-R« bounded and 9" X 98-measurable.

(2)' x is an r.c.l.l. process and satisfies

x, = x0 + / h(s, to, Xj_) dmr.
Jo

(3)' For every sequence rk: k g N of reals,

(m,z,x,(h(rk))ksN,h(-,u,x.-(u)))

= (m,z,x,(h(rk))k^N, «(■, to, x.-(w))).

Proof. «(/, to, r) = >^((gn(/, «)«„(/•))„eN) where»//, g„ and «„ are as in 7.8(h). By

saturation and Lemma 7.4, there exist basic predictable g„, and r.c.l.l. x s.t.

{m'zAgn)neinx)= (m,z,(g„)neN, x).

Let h(t,w, r) = 4'((g„(^w)h„(r))nEN). The result now follows from Theorem 7.5

by the proof of Theorem 7.8.   D

Corollary 7.10. Let h, m, z, x and m, z be as in Corollary 7.9, but assume in

addition that h(t, to, •) is continuous for each t, to. Let h: R+x A -+ C(R, R) be the

predictable process defined by h(t,u)(x) - h(t, to, x). Then there exist h, x on B such

that:

(1)" h[0, oo )  X B -» C(R,R) is predictable.

(2)" x is r.c.l.l. and satisfies x(t) = x(0) + j¿h(s, u)(xs_) dm(s).

(3)" (m, z, h, x) = (m, z, h, x).

Proof. Define basic predictable C(R, Revalued processes as in 7.2 except that the

values a, are taken to be elements of C(R, R). Since C(R, R) is a Polish space the

standard results on measure theory for real functions can be adapted to show that

there exist basic predictable «„: R+ X B -» C(R, R) and a measurable Borel function

<p: C(R,R)N -> C(R,R) such that <p[C(R,R)N] is a uniformly bounded set of

functions and <p(h„: n g N) = h. Now if 8k, k g N, are the functions introduced in

Lemma 7.6, we see that for each «,

«„=  lim hn°8k
k—*x

(limit in the topology of uniform cnvergence on bounded sets). By saturation and

Lemma 7.4, there exist basic predictable hn, « g N, and r.c.l.l. x on B such that

(m, z,x,h„)nt¡ri = (m,i,x, h)„eti.

Since evaluation is a continuous map C(R, R) X R -» R, we see that

(«j, z, x, «"„, hn(6k{x)))n AeN = {m,z, h„, h„(0k(*)))k.neti-

hn(Ok(x)) and h(Ok(x)) are both basic predictable real-valued processes, and now

the result follows as usual from Theorem 7.5.

References

[1981] D. Aldous, Weak convergence and the general theory of processes, preprint.

[1976] R. M. Anderson, A non-standard representation of Browman motion and llo integration, Israel J.

Math. 25(1976), 15-46.
[1981] M. T. Barlow. Construction of a martingale with a given absolute value, Ann. Probab. 9 (1981),

314-320.



ADAPTED probability distributions 201

[1968] P. Billingsley, Convergence of probability measure, Wiley. New York, 1968.

[1982] D. N. Hoover and E. Perkins, Nonstandard construction of the stochastic integral and applications

to stochastic differential equations. I, II, Trans. Amer. Math. Soc. 275 (1983). 1-58.

[1979] H. J. Keisler, Hyperfinite probability theory and probability logic. Lecture Notes, Univ. of

Wisconsin (unpublished).

[1982]_An infinitesimal approach to stochastic analysis, Mem. Amer. Math. Soc. (to appear).

[1983]_Probability quantifiers. Abstract Model Theory and Logics of Mathematical Concepts (J.

Barwise and S. Feferman. eds). Springer-Verlag, Berlin and New York (to appear).

[1975] F. B. Knight, A predictive view of continuous time processes, Ann. Probab. 3 (1975), 573-596.

[1977] A. U. Kussmaul. Stochastic integration and generalized martingales. Pitman, New York, 1977.

[1979] P. A. Loeb, A n introduction to nonstandard analysis and hyperfinite probability theory. Probabilistic

Analysis and Related Topics 2, (Bharucha and Reid, eds), Academic Press, New York, 1979, pp.

105-142.
[1942] D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sei. U.S.A. 28 (1942),

108-111.
[1950]_Decompositions of measure algebras and spaces. Trans. Amer. Math. Soc. 69 (1950),

142-160.
[1980] M. Metivier and J. Pellaumail. Stochastic integration. Academic Press, New York, 1980.

[1982] E. Perkins, On the construction and distribution of a local martingale with a given absolute value.

Trans. Amer. Math. Soc. 271 (1982), 261-281.

[1982] H. Rodenhausen. The completeness theorem for adapted probability logic. Ph.D. Thesis. Heidel-

berg University.

[1983] K. D. Stroyan and J. M. Bayod, Foundations of infinitesimal stochastic analysis. North-Holland,

Amsterdam (to appear).

[1978] P. A. Meyer and C Dellacherie, Probabilities and potential, North-Holland Mathematical Studies

No. 29. North-Holland, Amsterdam, 1978.

Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada

K7L 3N6

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706


