Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Sous-espaces bien disposés de $L^{1}$-applications
HTML articles powered by AMS MathViewer

by Gilles Godefroy
Trans. Amer. Math. Soc. 286 (1984), 227-249
DOI: https://doi.org/10.1090/S0002-9947-1984-0756037-1

Abstract:

RÉsumÉ. On montre que le quotient d’un espace ${L^1}$ par un sous-espace fermé dont la boule unité est fermée dans ${L^0}$ est faiblement séquentiellement complet; cette situation se présente dans de nombreux cas concrets, tels que le quotient ${L^1}/{H^1}$. On applique le résultat général dans diverses situations: duaux de certaines algères uniformes, analyse harmonique, fonctions de plusieurs variables complexes. On montre ensuite comment peuvent s’appliquer les métheodes de $M$-structure; on considère aussi de nouvelles classes d’uniques préduaux. A titre d’exemples, on montre: (1) Le caractère f.s.c. d’espaces ${\mathcal {C}_E}{(G)^\ast }$, pour de "gros" sous-ensembles $E$ du groupe dual $\Gamma = \hat G$. (2) Le caractère f.s.c. d’espaces ${L^1}/{H^1}$ mutli-dimensionnels, tels que ${L^1}/{H^1}({D^n})$ et ${L^1}/{H^1}({B^n})$. (3) L’unicité du prédual pour certaines sous-algèbres ultrafaiblement fermées non-autoadjointes de $\mathcal {L}(H)$. One shows that the quotient of an ${L^1}$-space by a closed subspace, whose unit ball is closed in ${L^0}$, is weakly sequentially complete. This situation occurs in many natural cases, like ${L^1}/{H^1}$. This result is applied in several situations: uniform algebras, harmonic analysis, functions of several complex variables. One shows how to apply $M$-structure theory; several new classes of unique preduals are also obtained. As an example, one shows: (1) If $E$ is a "big" subset of the dual group $\Gamma = \hat G$, then ${\mathcal {C}_E}{(G)^\ast }$ is w.s.c. (2) The spaces ${L^1}/{H^1}({D^n})$ and ${L^1}/{H^1}({B^n})$ are w.s.c. (3) Several classes of ${\omega ^\ast }$-closed non-self-adjoint subalgebras of $\mathcal {L}(H)$ have unique preduals.
References
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B25, 32A35, 46J15
  • Retrieve articles in all journals with MSC: 46B25, 32A35, 46J15
Bibliographic Information
  • © Copyright 1984 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 286 (1984), 227-249
  • MSC: Primary 46B25; Secondary 32A35, 46J15
  • DOI: https://doi.org/10.1090/S0002-9947-1984-0756037-1
  • MathSciNet review: 756037