The amalgamation property for varieties of lattices
HTML articles powered by AMS MathViewer
- by Alan Day and Jaroslav Ježek
- Trans. Amer. Math. Soc. 286 (1984), 251-256
- DOI: https://doi.org/10.1090/S0002-9947-1984-0756038-3
- PDF | Request permission
Abstract:
There are precisely three varieties of lattices that satisfy the amalgamation property: trivial lattices, distributive lattices, and all lattices.References
- Alan Day, Splitting lattices generate all lattices, Algebra Universalis 7 (1977), no. 2, 163–169. MR 434897, DOI 10.1007/BF02485425
- Alan Day, Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices, Canadian J. Math. 31 (1979), no. 1, 69–78. MR 518707, DOI 10.4153/CJM-1979-008-x
- G. Grätzer, B. Jónsson, and H. Lakser, The amalgamation property in equational classes of modular lattices, Pacific J. Math. 45 (1973), 507–524. MR 366768
- Jaroslav Ježek and Václav Slavík, Primitive lattices, Czechoslovak Math. J. 29(104) (1979), no. 4, 595–634 (English, with Russian summary). MR 548223
- Bjarni Jónsson, Universal relational systems, Math. Scand. 4 (1956), 193–208. MR 96608, DOI 10.7146/math.scand.a-10468
- Ralph McKenzie, Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1–43. MR 313141, DOI 10.1090/S0002-9947-1972-0313141-1
- Richard S. Pierce, Introduction to the theory of abstract algebras, Holt, Rinehart and Winston, New York-Montreal, Que.-London, 1968. MR 0227070 V. Slavík, A note on the amalgamation property in lattice varieties, Colloq. Math. Soc. Janos Bolyai (Szeged) (to appear).
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 286 (1984), 251-256
- MSC: Primary 06B20; Secondary 08B25
- DOI: https://doi.org/10.1090/S0002-9947-1984-0756038-3
- MathSciNet review: 756038