Stochastic representation and singularities of solutions of second order equations with semidefinite characteristic form
Author:
Kazuo Amano
Journal:
Trans. Amer. Math. Soc. 286 (1984), 295-312
MSC:
Primary 35H05; Secondary 35J70, 60J60
DOI:
https://doi.org/10.1090/S0002-9947-1984-0756041-3
MathSciNet review:
756041
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In the theory of partial differential equations, there is no explicit representation of solutions for general degenerate elliptic-parabolic equations. However, Stroock and Varadhan [15] have obtained a stochastic representation for such a wider class of equations in space. In this paper we establish, by using Stroock and Varadhan's stochastic representation, a method which enables us to construct solutions with singularities of second order equations with semidefinite characteristic form. Our theorems are not probabilistic paraphrases of the results obtained in the theory of partial differential equations. In fact, each assumption of the theorems is much weaker than any assumption of corresponding known results.
- [1] Kazuo Amano, A necessary condition for hypoellipticity of degenerate elliptic-parabolic operators, Tokyo J. Math. 2 (1979), no. 1, 111–120. MR 541900, https://doi.org/10.3836/tjm/1270473562
- [2] Kazuo Amano, Hypoellipticity of a class of degenerate elliptic-parabolic operators, Comm. Partial Differential Equations 6 (1981), no. 8, 903–916. MR 619750, https://doi.org/10.1080/03605308108820197
- [3] Richard Beals and Charles Fefferman, On hypoellipticity of second order operators, Comm. Partial Differential Equations 1 (1976), no. 1, 73–85. MR 397141, https://doi.org/10.1080/03605307608820004
- [4] J. M. Bony, Équivalence des diverses notions de spectre singulier analytique, Séminaire Goulaouic-Schwartz (1976/1977), Équations aux dérivées partielles et analyse fonctionnelle, Exp. No. 3, Centre Math., École Polytech., Palaiseau, 1977, pp. 12 (French). MR 0650834
- [5] M. Derridj, Sur une class d'opérateurs différentiels hypoelliptiques à coefficients analytiques, Séminaire Goulaouic-Schwartz, 1970/71.
- [6] A. Friedman, Stochastic differential equations and applications. I, II, Academic Press, New York, 1975, 1976.
- [7] Bernard Helffer and Claude Zuily, Non-hypoellipticité d’une classe d’opérateurs différentiels, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A1061–A1063 (French). MR 338544
- [8] Lars Hörmander, Pseudo-differential operators and hypoelliptic equations, Singular integrals (Proc. Sympos. Pure Math., Vol. X, Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, pp. 138–183. MR 0383152
- [9] Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, https://doi.org/10.1007/BF02392081
- [10] Yakar Kannai, Hypoelliptic ordinary differential operators, Israel J. Math. 13 (1972), 106–134 (1973). MR 346226, https://doi.org/10.1007/BF02760232
- [11] S. Kusuoka and D. W. Stroock, Applications of the Malliavin calculus. I, II, III (to appear).
- [12] O. A. Oleĭnik and E. V. Radkevič, Second order equations with nonnegative characteristic form, Plenum, New York, 1973.
- [13] R. S. Phillips and Leonard Sarason, Elliptic-parabolic equations of the second order, J. Math. Mech. 17 (1967/1968), 891–917. MR 0219868
- [14] Mikio Sato, Takahiro Kawai, and Masaki Kashiwara, Microfunctions and pseudo-differential equations, Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971; dedicated to the memory of André Martineau), Springer, Berlin, 1973, pp. 265–529. Lecture Notes in Math., Vol. 287. MR 0420735
- [15] D. Stroock and S. R. S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math. 25 (1972), 651–713. MR 387812, https://doi.org/10.1002/cpa.3160250603
- [16] Héctor J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171–188. MR 321133, https://doi.org/10.1090/S0002-9947-1973-0321133-2
- [17] Claude Zuily, Sur l’hypoellipticité des opérateurs différentiels d’ordre 2 à coefficients réels, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A529–A530 (French). MR 324196
Retrieve articles in Transactions of the American Mathematical Society with MSC: 35H05, 35J70, 60J60
Retrieve articles in all journals with MSC: 35H05, 35J70, 60J60
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1984-0756041-3
Keywords:
Degenerate elliptic-parabolic equations
Article copyright:
© Copyright 1984
American Mathematical Society