Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On Skolem’s exponential functions below $2^{2^{X}}$
HTML articles powered by AMS MathViewer

by Lou van den Dries and Hilbert Levitz PDF
Trans. Amer. Math. Soc. 286 (1984), 339-349 Request permission

Abstract:

A result of Ehrenfeucht implies that the smallest class of number-theoretic functions $f:{\mathbf {N}} \to {\mathbf {N}}$ containing the constants $0,1,2, \ldots$, the identity function $X$, and closed under addition, multiplication and $f \to {f^X}$, is well-ordered by the relation of eventual dominance. We show that its order type is ${\omega ^{{\omega ^\omega }}}$, and that for any two nonzero functions $f,g$ in the class the quotient $f(n)/g(n)$ tends to a limit in ${E^ + } \cup \{ 0,\infty \}$ as $n \to \infty$, where ${E^ + }$ is the smallest set of positive real numbers containing $1$ and closed under addition, multiplication and under the operations $x \to {x^{ - 1}},x \to {e^x}$.
References
  • Heinz Bachmann, Transfinite Zahlen, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 1, Springer-Verlag, Berlin-New York, 1967 (German). Zweite, neubearbeitete Auflage. MR 0219424, DOI 10.1007/978-3-642-88514-3
  • N. G. de Bruijn, Asymptotic methods in analysis, North-Holland, Amsterdam, 1958.
  • A. Ehrenfeucht, Polynomial functions with exponentiation are well ordered, Algebra Universalis 3 (1973), 261–262. MR 332582, DOI 10.1007/BF02945125
  • R. Gurevič, Transcendent numbers and eventual dominance of exponential functions, Abstracts Amer. Math. Soc. 4 (1983), 310. G. H. Hardy, Orders of infinity: The ’infinitärcalcül’ of Paul du Bois-Reymond, 2nd ed., Cambridge Univ. Press, Cambridge, 1924.
  • Hilbert Levitz, An initial segment of the set of polynomial functions with exponentiation, Algebra Universalis 7 (1977), no. 1, 133–136. MR 498009, DOI 10.1007/BF02485422
  • Hilbert Levitz, An ordinal bound for the set of polynomial functions with exponentiation, Algebra Universalis 8 (1978), no. 2, 233–243. MR 473913, DOI 10.1007/BF02485393
  • Hilbert Levitz, The Cartesian product of sets and the Hessenberg natural product of ordinals, Czechoslovak Math. J. 29(104) (1979), no. 3, 353–358. MR 536062, DOI 10.21136/CMJ.1979.101618
  • Hilbert Levitz, Calculation of an order type: an application of nonstandard methods, Z. Math. Logik Grundlagen Math. 28 (1982), no. 3, 219–228. MR 668008, DOI 10.1002/malq.19820281406
  • D. Richardson, Solution of the identity problem for integral exponential functions, Z. Math. Logik Grundlagen Math. 15 (1969), 333–340. MR 262068, DOI 10.1002/malq.19690152003
  • Th. Skolem, An ordered set of arithmetic functions representing the least $\epsilon$-number, Norske Vid. Selsk. Forh., Trondheim 29 (1956), 54–59 (1957). MR 0083957
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 03D20, 06F05, 26A12
  • Retrieve articles in all journals with MSC: 03D20, 06F05, 26A12
Additional Information
  • © Copyright 1984 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 286 (1984), 339-349
  • MSC: Primary 03D20; Secondary 06F05, 26A12
  • DOI: https://doi.org/10.1090/S0002-9947-1984-0756043-7
  • MathSciNet review: 756043