The Selberg trace formula. V. Questions of trace class
HTML articles powered by AMS MathViewer
- by M. Scott Osborne and Garth Warner
- Trans. Amer. Math. Soc. 286 (1984), 351-376
- DOI: https://doi.org/10.1090/S0002-9947-1984-0756044-9
- PDF | Request permission
Abstract:
The purpose of this paper is to develop criteria which will ensure that the $K$-finite elements of $C_c^\infty (G)$ are represented on $L_{{\text {dis}}}^2(G/\Gamma )$ by trace class operators.References
- James Arthur, The trace formula for reductive groups, Conference on automorphic theory (Dijon, 1981) Publ. Math. Univ. Paris VII, vol. 15, Univ. Paris VII, Paris, 1983, pp. 1–41. MR 723181, DOI 10.1007/978-1-4684-6730-7_{1}
- Jeff Cheeger and Shing Tung Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981), no. 4, 465–480. MR 615626, DOI 10.1002/cpa.3160340404
- Siu Yuen Cheng, Peter Li, and Shing Tung Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math. 103 (1981), no. 5, 1021–1063. MR 630777, DOI 10.2307/2374257
- Harold Donnelly, On the point spectrum for finite volume symmetric spaces of negative curvature, Comm. Partial Differential Equations 6 (1981), no. 9, 963–992. MR 627655, DOI 10.1080/03605308108820201
- Harold Donnelly, On the cuspidal spectrum for finite volume symmetric spaces, J. Differential Geometry 17 (1982), no. 2, 239–253. MR 664496
- Harold Donnelly and Peter Li, Lower bounds for the eigenvalues of negatively curved manifolds, Math. Z. 172 (1980), no. 1, 29–40. MR 576293, DOI 10.1007/BF01182776
- Robert P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976. MR 0579181, DOI 10.1007/BFb0079929
- Werner Müller, Spectral theory for Riemannian manifolds with cusps and a related trace formula, Math. Nachr. 111 (1983), 197–288. MR 725778, DOI 10.1002/mana.19831110109
- M. Scott Osborne and Garth Warner, The Selberg trace formula. I. $\Gamma$-rank one lattices, J. Reine Angew. Math. 324 (1981), 1–113. MR 614517, DOI 10.1515/crll.1981.324.1
- M. Scott Osborne and Garth Warner, The Selberg trace formula. II. Partition, reduction, truncation, Pacific J. Math. 106 (1983), no. 2, 307–496. MR 699915, DOI 10.2140/pjm.1983.106.307
- M. Scott Osborne and Garth Warner, The Selberg trace formula. II. Partition, reduction, truncation, Pacific J. Math. 106 (1983), no. 2, 307–496. MR 699915, DOI 10.2140/pjm.1983.106.307 —, The Selberg trace formula. IV, Lecture Notes in Math., vol. 1024, Springer-Verlag, Berlin and New York, 1983, pp. 112-263.
- Atle Selberg, Discontinuous groups and harmonic analysis, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 177–189. MR 0176097
- Robert S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Functional Analysis 52 (1983), no. 1, 48–79. MR 705991, DOI 10.1016/0022-1236(83)90090-3
- N. R. Wallach, On the constant term of a square integrable automorphic form, Operator algebras and group representations, Vol. II (Neptun, 1980) Monogr. Stud. Math., vol. 18, Pitman, Boston, MA, 1984, pp. 227–237. MR 733320
- Garth Warner, Selberg’s trace formula for nonuniform lattices: the $R$-rank one case, Studies in algebra and number theory, Adv. in Math. Suppl. Stud., vol. 6, Academic Press, New York-London, 1979, pp. 1–142. MR 535763
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 286 (1984), 351-376
- MSC: Primary 22E40; Secondary 32N10, 58G25
- DOI: https://doi.org/10.1090/S0002-9947-1984-0756044-9
- MathSciNet review: 756044