Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in $\textbf {R}^{4}$
HTML articles powered by AMS MathViewer
- by Steven R. Dunbar
- Trans. Amer. Math. Soc. 286 (1984), 557-594
- DOI: https://doi.org/10.1090/S0002-9947-1984-0760975-3
- PDF | Request permission
Abstract:
We establish the existence of traveling wave solutions for a reaction-diffusion system based on the Lotka-Volterra differential equation model of a predator and prey interaction. The waves are of transition front type, analogous to the solutions discussed by Fisher and Kolmogorov et al. for a scalar reaction-diffusion equation. The waves discussed here are not necessarily monotone. There is a speed ${c^\ast } > 0$ such that for $c > {c^\ast }$ there is a traveling wave moving with speed $c$. The proof uses a shooting argument based on the nonequivalence of a simply connected region and a nonsimply connected region together with a Liapunov function to guarantee the existence of the traveling wave solution. The traveling wave solution is equivalent to a heteroclinic orbit in $4$-dimensional phase space.References
- P. L. Chow and W. C. Tam, Periodic and traveling wave solutions to Volterra-Lotka equations with diffusion, Bull. Math. Biology 38 (1976), no. 6, 643–658. MR 0481538, DOI 10.1007/bf02458639
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
- C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J. 33 (1984), no. 3, 319–343. MR 740953, DOI 10.1512/iumj.1984.33.33018
- Albrecht Dold, Lectures on algebraic topology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 200, Springer-Verlag, Berlin-New York, 1980. MR 606196 D. M. Dubois, A model of patchiness of prey-predator plankton populations, Ecol. Modelling 1 (1975), 67-80.
- Steven R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol. 17 (1983), no. 1, 11–32. MR 707221, DOI 10.1007/BF00276112 —, Travelling wave solutions of diffusive Volterra-Lotka interaction equations, Ph.D. Thesis, Univ of Minnesota, 1981.
- Richard J. Field and William C. Troy, The existence of solitary traveling wave solutions of a model of the Belousov-Zhabotinskiĭ reaction, SIAM J. Appl. Math. 37 (1979), no. 3, 561–587. MR 549140, DOI 10.1137/0137042
- Paul C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin-New York, 1979. MR 527914, DOI 10.1007/978-3-642-93111-6 R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), 335-369. F. R. Gantmacher, The theory of matrices, Vol. 2, Chelsea, New York, 1964.
- Robert A. Gardner, Existence and stability of travelling wave solutions of competition models: a degree theoretic approach, J. Differential Equations 44 (1982), no. 3, 343–364. MR 661157, DOI 10.1016/0022-0396(82)90001-8
- Robert A. Gardner, Existence of travelling wave solutions of predator-prey systems via the connection index, SIAM J. Appl. Math. 44 (1984), no. 1, 56–79. MR 730001, DOI 10.1137/0144006
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- S. P. Hastings, On the existence of homoclinic and periodic orbits for the Fitzhugh-Nagumo equations, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 123–134. MR 393759, DOI 10.1093/qmath/27.1.123
- Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0486784 A. Kolmogorov, I. Petrovsky and N. Piscounov, Étude de l’equation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Moscow Univ. Math. Bull. 1 (1937), 1-25.
- J. P. LaSalle, Stability theory for ordinary differential equations, J. Differential Equations 4 (1968), 57–65. MR 222402, DOI 10.1016/0022-0396(68)90048-X
- J. B. McLeod and James Serrin, The existence of similiar solutions for some laminar boundary layer problems, Arch. Rational Mech. Anal. 31 (1968/69), 288–303. MR 235789, DOI 10.1007/BF00253709
- Ross McMurtrie, Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments, Math. Biosci. 39 (1978), no. 1-2, 11–51. MR 490056, DOI 10.1016/0025-5564(78)90026-3
- Akira Okubo, Diffusion and ecological problems: mathematical models, Biomathematics, vol. 10, Springer-Verlag, Berlin-New York, 1980. An extended version of the Japanese edition, Ecology and diffusion; Translated by G. N. Parker. MR 572962
- J. P. Pauwelussen, Heteroclinic waves of the FitzHugh-Nagumo equations, Math. Biosci. 58 (1982), no. 2, 217–242. MR 661209, DOI 10.1016/0025-5564(82)90074-8
- William C. Troy, The existence of traveling wave front solutions of a model of the Belousov-Zhabotinskii chemical reaction, J. Differential Equations 36 (1980), no. 1, 89–98. MR 571130, DOI 10.1016/0022-0396(80)90078-9 T. Wyatt, The biology of Oikopleura dioica and frittilaria borealis in the southern Bight, Mar. Biol. 22 (1973), 137.
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 286 (1984), 557-594
- MSC: Primary 35K57; Secondary 58F40, 92A15
- DOI: https://doi.org/10.1090/S0002-9947-1984-0760975-3
- MathSciNet review: 760975