The radiance obstruction and parallel forms on affine manifolds
HTML articles powered by AMS MathViewer
- by William Goldman and Morris W. Hirsch
- Trans. Amer. Math. Soc. 286 (1984), 629-649
- DOI: https://doi.org/10.1090/S0002-9947-1984-0760977-7
- PDF | Request permission
Abstract:
A manifold $M$ is affine if it is endowed with a distinguished atlas whose coordinate changes are locally affine. When they are locally linear $M$ is called radiant. The obstruction to radiance is a one-dimensional class ${c_M}$ with coefficients in the flat tangent bundle of $M$. Exterior powers of ${c_M}$ give information on the existence of parallel forms on $M$, especially parallel volume forms. As applications, various kinds of restrictions are found on the holonomy and topology of compact affine manifolds.References
- L. Auslander and L. Markus, Holonomy of flat affinely connected manifolds, Ann. of Math. (2) 62 (1955), 139–151. MR 72518, DOI 10.2307/2007104
- Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0221500
- William G. Dwyer, Vanishing homology over nilpotent groups, Proc. Amer. Math. Soc. 49 (1975), 8–12. MR 374242, DOI 10.1090/S0002-9939-1975-0374242-3
- David Fried and William M. Goldman, Three-dimensional affine crystallographic groups, Adv. in Math. 47 (1983), no. 1, 1–49. MR 689763, DOI 10.1016/0001-8708(83)90053-1 —, (in preparation).
- D. Fried, W. Goldman, and M. W. Hirsch, Affine manifolds and solvable groups, Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 3, 1045–1047. MR 585187, DOI 10.1090/S0273-0979-1980-14849-1
- David Fried, William Goldman, and Morris W. Hirsch, Affine manifolds with nilpotent holonomy, Comment. Math. Helv. 56 (1981), no. 4, 487–523. MR 656210, DOI 10.1007/BF02566225 W. Goldman, Discontinuous groups and the Euler class, Doctoral Dissertation, Univ. of California, Berkeley, Calif., 1980.
- William M. Goldman and Morris W. Hirsch, A generalization of Bieberbach’s theorem, Invent. Math. 65 (1981/82), no. 1, 1–11. MR 636876, DOI 10.1007/BF01389291
- William M. Goldman and Morris W. Hirsch, Polynomial forms on affine manifolds, Pacific J. Math. 101 (1982), no. 1, 115–121. MR 671843 —, Affine structures and actions of Lie groups (in preparation).
- William M. Goldman, Morris W. Hirsch, and Gilbert Levitt, Invariant measures for affine foliations, Proc. Amer. Math. Soc. 86 (1982), no. 3, 511–518. MR 671227, DOI 10.1090/S0002-9939-1982-0671227-8
- Morris W. Hirsch, Flat manifolds and the cohomology of groups, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 94–103. MR 518410
- Morris W. Hirsch and William P. Thurston, Foliated bundles, invariant measures and flat manifolds, Ann. of Math. (2) 101 (1975), 369–390. MR 370615, DOI 10.2307/1970996
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974 G. A. Margulis, Discrete groups of motions of spaces of nonpositive curvature, Trans. Amer. Math. Soc. 109 (1977), 33-45.
- John Milnor, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25 (1977), no. 2, 178–187. MR 454886, DOI 10.1016/0001-8708(77)90004-4
- Yozô Matsushima, Affine structures on complex manifolds, Osaka Math. J. 5 (1968), 215–222. MR 240741 L. Markus, Cosmological models in differential geometry, Mimeographed Notes, Univ. of Minnesota, 1962, p. 58.
- Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, N.J., 1971, pp. 77–169 (French). MR 0385006 J. Smillie, Affinely flat manifolds, Doctoral Dissertation, Univ. of Chicago, 1977.
- John Smillie, An obstruction to the existence of affine structures, Invent. Math. 64 (1981), no. 3, 411–415. MR 632981, DOI 10.1007/BF01389273
- Robert J. Zimmer, Ergodic theory, group representations, and rigidity, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 383–416. MR 648527, DOI 10.1090/S0273-0979-1982-15005-4
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 286 (1984), 629-649
- MSC: Primary 57R99; Secondary 53C20, 55R25
- DOI: https://doi.org/10.1090/S0002-9947-1984-0760977-7
- MathSciNet review: 760977