Radial functions and invariant convolution operators
HTML articles powered by AMS MathViewer
- by Christopher Meaney
- Trans. Amer. Math. Soc. 286 (1984), 665-674
- DOI: https://doi.org/10.1090/S0002-9947-1984-0760979-0
- PDF | Request permission
Abstract:
For $1 < p < 2$ and $n > 1$, let ${A_p}({{\mathbf {R}}^n})$ denote the Figà-Talamanca-Herz algebra, consisting of functions of the form $( \ast )$ \[ \sum \limits _{k = 0}^\infty {{f_k} \ast {g_k}} \] with $\sum \nolimits _k {||{f_k}|{|_p}\cdot ||{g_k}|{|_{p\prime }} < \infty }$. We show that if $2n/(n + 1) < p < 2$, then the subalgebra of radial functions in ${A_p}({{\mathbf {R}}^n})$ is strictly larger than the subspace of functions with expansions $( \ast )$ subject to the additional condition that ${f_k}$ and ${g_k}$ are radial for all $k$. This is a partial answer to a question of Eymard and is a consequence of results of Herz and Fefferman. We arrive at the statement above after examining a more abstract situation. Namely, we fix $G \in [FIA]_{B}^{ - }$ and consider $^B{A_p}(G)$ the subalgebra of $B$-invariant elements of ${A_p}(G)$. In particular, we show that the dual of $^B{A_p}(G)$ is equal to the space of bounded, right-translation invariant operators on ${L^{p}}(G)$ which commute with the action of $B$.References
- Jean Braconnier, Sur les groupes topologiques localement compacts, J. Math. Pures Appl. (9) 27 (1948), 1–85 (French). MR 25473
- Michael Cowling, Some applications of Grothendieck’s theory of topological tensor products in harmonic analysis, Math. Ann. 232 (1978), no. 3, 273–285. MR 493165, DOI 10.1007/BF01351432 Pierre Eymard, Algèbres ${A_p}$ et convoluteurs de ${L^{p}}$, Sèm. Bourbaki 367, Nov. 1969.
- Charles Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336. MR 296602, DOI 10.2307/1970864
- Alessandro Figà-Talamanca, Translation invariant operators in $L^{p}$, Duke Math. J. 32 (1965), 495–501. MR 181869
- George Gasper and Walter Trebels, Multiplier criteria of Hörmander type for Fourier series and applications to Jacobi series and Hankel transforms, Math. Ann. 242 (1979), no. 3, 225–240. MR 545216, DOI 10.1007/BF01420728 Roger Godement, Introduction aux travaux de A. Selherg, Sém. Bourbaki 144, 1957.
- Klaus Hartmann, $[\textrm {FIA}]_{\bar B}$ Gruppen und Hypergruppen, Monatsh. Math. 89 (1980), no. 1, 9–17 (German, with English summary). MR 566291, DOI 10.1007/BF01571562
- Klaus Hartmann, Rolf Wim Henrichs, and Rupert Lasser, Duals of orbit spaces in groups with relatively compact inner automorphism groups are hypergroups, Monatsh. Math. 88 (1979), no. 3, 229–238. MR 553732, DOI 10.1007/BF01295237
- Carl S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996–999. MR 63477, DOI 10.1073/pnas.40.10.996
- Carl Herz, The theory of $p$-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69–82. MR 272952, DOI 10.1090/S0002-9947-1971-0272952-0
- Carl Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91–123 (English, with French summary). MR 355482
- C. Herz, On the asymmetry of norms of convolution operators. I, J. Functional Analysis 23 (1976), no. 1, 11–22. MR 0420138, DOI 10.1016/0022-1236(76)90055-0
- C. Herz, Asymmetry of norms of convolution operators. II. Nilpotent Lie groups, Symposia Mathematica, Vol. XXII (Convegno sull’Analisi Armonica e Spazi di Funzioni su Gruppi Localmente Compatti, INDAM, Rome, 1976) Academic Press, London, 1977, pp. 223–230. MR 0487284 Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. I and II, Springer-Verlag, Berlin, Heidelberg and New York, 1963 and 1970.
- Satoru Igari, On the multipliers of Hankel transform, Tohoku Math. J. (2) 24 (1972), 201–206. MR 324332, DOI 10.2748/tmj/1178241530
- Eberhard Kaniuth and Detlef Steiner, On complete regularity of group algebras, Math. Ann. 204 (1973), 305–329. MR 470613, DOI 10.1007/BF01354580
- J. Liukkonen and R. Mosak, Harmonic analysis and centers of group algebras, Trans. Amer. Math. Soc. 195 (1974), 147–163. MR 350322, DOI 10.1090/S0002-9947-1974-0350322-7
- N. Lohoué, Estimations $L^{p}$ des coefficients de représentation et opérateurs de convolution, Adv. in Math. 38 (1980), no. 2, 178–221 (French). MR 597197, DOI 10.1016/0001-8708(80)90004-3
- Michel Mizony, Contribution à l’analyse harmonique sphérique, Publ. Dép. Math. (Lyon) 12 (1975), no. 1, 61–108 (French). MR 383011
- Richard D. Mosak, The $L^{1}$- and $C^{\ast }$-algebras of $[FIA]^{-}_{B}$ groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277–310. MR 293016, DOI 10.1090/S0002-9947-1972-0293016-7
- Daniel M. Oberlin, $M_{p}(G)\not =M_{q}(G)$ $(p^{-1}+$ $q^{-1}=1)$, Israel J. Math. 22 (1975), no. 2, 175–179. MR 387956, DOI 10.1007/BF02760165
- T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), no. 4, 683–741. MR 513952, DOI 10.1216/RMJ-1978-8-4-683
- Justin Peters, Representing positive definite $B$-invariant functions on $[FC]_{B}{}^{-}$ groups, Monatsh. Math. 80 (1975), no. 4, 319–324. MR 420151, DOI 10.1007/BF01472579
- Justin Peters and Terje Sund, Automorphisms of locally compact groups, Pacific J. Math. 76 (1978), no. 1, 143–156. MR 578732 Stephen G. Roberts, ${A_p}$ spaces and asymmetry of ${L_p}$-operator norms for convolution operators, M.Sc. Thesis, Flinders University of South Australia, 1982.
- Robert J. Stanton and Peter A. Tomas, Polyhedral summability of Fourier series on compact Lie groups, Amer. J. Math. 100 (1978), no. 3, 477–493. MR 622197, DOI 10.2307/2373834
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 286 (1984), 665-674
- MSC: Primary 43A22; Secondary 42B15
- DOI: https://doi.org/10.1090/S0002-9947-1984-0760979-0
- MathSciNet review: 760979