Hermitian forms in function theory
HTML articles powered by AMS MathViewer
- by Christine R. Leverenz
- Trans. Amer. Math. Soc. 286 (1984), 675-688
- DOI: https://doi.org/10.1090/S0002-9947-1984-0760980-7
- PDF | Request permission
Abstract:
Let $f$ and $g$ be analytic in the unit disk $|z|\; < 1$. We give a new derivation of the positive semidefinite Hermitian form equivalent to $|g(z)| \leq |f(z)|$, for $| z | < 1$, and use it to derive Hermitian forms for various classes of univalent functions. Sharp coefficient bounds for these classes are obtained from the Hermitian forms. We find the specific functions required to make the Hermitian forms equal to zero.References
- C. Carathéodory, Über den Variabilitäts bereich der Fourierschen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo 32 (1911), 193-217.
Edmund G. H. Landau, Darstellung und Begründung einiger neurer Ergebnisse der Functionen theories, Springer, Berlin, 1929.
- Glenn Schober, Univalent functions—selected topics, Lecture Notes in Mathematics, Vol. 478, Springer-Verlag, Berlin-New York, 1975. MR 0507770 J. Schur, Über Potenzreihen die im Innern des Einheits kreises beschrankt sind, J. Angew. Math. 147 (1917), 204-232.
- T. J. Suffridge, A new criterion for starlike functions, Indiana Univ. Math. J. 28 (1979), no. 3, 429–443. MR 529675, DOI 10.1512/iumj.1979.28.28029
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 286 (1984), 675-688
- MSC: Primary 30C45
- DOI: https://doi.org/10.1090/S0002-9947-1984-0760980-7
- MathSciNet review: 760980