The role of countable dimensionality in the theory of cell-like relations
HTML articles powered by AMS MathViewer
- by Fredric D. Ancel
- Trans. Amer. Math. Soc. 287 (1985), 1-40
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766204-X
- PDF | Request permission
Abstract:
Consider only metrizable spaces. The notion of a slice-trivial relation is introduced, and Theorem 3.2 is proved. This theorem sets forth sufficient conditions for a continuous relation with compact $U{V^\infty }$ point images to be slice-trivial. Theorem 4.5 posits a number of necessary and sufficient conditions for a map to be a hereditary shape equivalence. Several applications of these two theorems are made, including the following. Theorem 5.1. A cell-like map $f:X \to Y$ is a hereditary shape equivalence if there is a sequence $\{ {K_n}\}$ of closed subsets of $Y$ such that (1) $Y - \bigcup \nolimits _{n = 1}^\infty {{K_n}}$ is countable dimensional, and (2) $f|{f^{ - 1}}({K_n}):{f^{ - 1}}({K_n}) \to {K_n}$ is a hereditary shape equivalence for each $n \geq 1$. Theorem 5.9. If $f:X \to Y$ is a proper onto map whose point inverses are $U{V^\infty }$ sets, then $Y$ is an absolute neighborhood extensor for the class of countable dimensional spaces. Furthermore, if $Y$ is countable dimensional, then $Y$ is an absolute neighborhood retract. Theorem 5.9 is of particular interest when specialized to the identity map of a locally contractible space.References
- David F. Addis and John H. Gresham, A class of infinite-dimensional spaces. I. Dimension theory and Alexandroff’s problem, Fund. Math. 101 (1978), no. 3, 195–205. MR 521122, DOI 10.4064/fm-101-3-195-205 F. D. Ancel, The locally flat approximation of cell-like embedding relations, Ph.D. Thesis, University of Wisconsin, Madison, 1976.
- F. D. Ancel and J. W. Cannon, The locally flat approximation of cell-like embedding relations, Ann. of Math. (2) 109 (1979), no. 1, 61–86. MR 519353, DOI 10.2307/1971267
- Steve Armentrout and Thomas M. Price, Decompositions into compact sets with $UV$ properties, Trans. Amer. Math. Soc. 141 (1969), 433–442. MR 244994, DOI 10.1090/S0002-9947-1969-0244994-3
- J. W. Cannon, Taming cell-like embedding relations, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 66–118. MR 0391104
- J. W. Cannon, Taming codimension-one generalized submanifolds of $S^{n}$, Topology 16 (1977), no. 4, 323–334. MR 500987, DOI 10.1016/0040-9383(77)90039-8
- J. W. Cannon, $\Sigma ^{2}H^{3}=S^{5}/G$, Rocky Mountain J. Math. 8 (1978), no. 3, 527–532. MR 478166, DOI 10.1216/RMJ-1978-8-3-527
- J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), no. 1, 83–112. MR 541330, DOI 10.2307/1971245
- T. A. Chapman, Lectures on Hilbert cube manifolds, Regional Conference Series in Mathematics, No. 28, American Mathematical Society, Providence, R.I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975. MR 0423357
- R. J. Daverman and J. J. Walsh, Examples of cell-like maps that are not shape equivalences, Michigan Math. J. 30 (1983), no. 1, 17–30. MR 694925, DOI 10.1307/mmj/1029002784
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606 R. D. Edwards, The double suspension of certain homology $3$-spheres is ${S^5}$, Notices Amer. Math. Soc. 22 (1975), A-334; Abstract #757-G33.
- Daniel L. Everett, Embedding theorems for decomposition spaces, Houston J. Math. 3 (1977), no. 3, 351–368. MR 464241
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- John H. Gresham, A class of infinite-dimensional spaces. II. An extension theorem and the theory of retracts, Fund. Math. 107 (1980), no. 3, 237–245. MR 585553, DOI 10.4064/fm-107-3-237-245
- William E. Haver, Mappings between $\textrm {ANR}$s that are fine homotopy equivalences, Pacific J. Math. 58 (1975), no. 2, 457–461. MR 385865
- William E. Haver, A covering property for metric spaces, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973) Lecture Notes in Math., Vol. 375, Springer, Berlin, 1974, pp. 108–113. MR 0365504
- William E. Haver, Locally contractible spaces that are absolute neighborhood retracts, Proc. Amer. Math. Soc. 40 (1973), 280–284. MR 331311, DOI 10.1090/S0002-9939-1973-0331311-X
- William E. Haver, A near-selection theorem, General Topology Appl. 9 (1978), no. 2, 117–124. MR 503224, DOI 10.1016/0016-660x(78)90056-9
- Sze-tsen Hu, Theory of retracts, Wayne State University Press, Detroit, 1965. MR 0181977
- George Kozlowski, Factorization of certain maps up to homotopy, Proc. Amer. Math. Soc. 21 (1969), 88–92. MR 238312, DOI 10.1090/S0002-9939-1969-0238312-X —, Images of $ANR’s$, Trans. Amer. Math. Soc. (to appear). K. Kuratowski, Topology. II, Academic Press, New York, 1968.
- R. C. Lacher, Cell-like spaces, Proc. Amer. Math. Soc. 20 (1969), 598–602. MR 234437, DOI 10.1090/S0002-9939-1969-0234437-3
- R. C. Lacher, Cell-like mappings. I, Pacific J. Math. 30 (1969), 717–731. MR 251714
- D. R. McMillan Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327–337. MR 161320, DOI 10.2307/1970548
- Jun-iti Nagata, Modern dimension theory, Bibliotheca Mathematica, Vol. VI, Interscience Publishers John Wiley & Sons, Inc., New York, 1965. Edited with the cooperation of the “Mathematisch Centrum” and the “Wiskundig Genootschap” at Amsterdam. MR 0208571
- Roman Pol, A weakly infinite-dimensional compactum which is not countable-dimensional, Proc. Amer. Math. Soc. 82 (1981), no. 4, 634–636. MR 614892, DOI 10.1090/S0002-9939-1981-0614892-2
- Stephen Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), 604–610. MR 87106, DOI 10.1090/S0002-9939-1957-0087106-9
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Lynn Arthur Steen and J. Arthur Seebach Jr., Counterexamples in topology, 2nd ed., Springer-Verlag, New York-Heidelberg, 1978. MR 507446
- Joseph L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc. 81 (1975), 629–632. MR 375328, DOI 10.1090/S0002-9904-1975-13768-2
- H. Toruńczyk, On $\textrm {CE}$-images of the Hilbert cube and characterization of $Q$-manifolds, Fund. Math. 106 (1980), no. 1, 31–40. MR 585543, DOI 10.4064/fm-106-1-31-40 J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. 6 (1935), 268-279.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 287 (1985), 1-40
- MSC: Primary 54C55; Secondary 54C56, 54C60, 54F45
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766204-X
- MathSciNet review: 766204