On a.e. convergence of solutions of hyperbolic equations to $L^ p$-initial data
HTML articles powered by AMS MathViewer
- by Alberto Ruiz
- Trans. Amer. Math. Soc. 287 (1985), 167-188
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766212-9
- PDF | Request permission
Abstract:
We consider the Cauchy data problem $u(x,0) = 0$, $\partial u(x,0)/\partial t = f(x)$, for a strongly hyperbolic second order equation in $n$th spatial dimension, $n \geq 3$, with ${C^\infty }$ coefficients. Almost everywhere convergence of the solution of this problem to initial data, in the appropriate sense is proved for $f$ in ${L^p}$, $2n/(n + 1) < p < 2(n - 2)/(n - 3)$. The basic techniques are ${L^p}$-estimates for some maximal operators associated to the problem (see [4]), and the asymptotic expansion of the Riemann function given by D. Ludwig (see [9]).References
- Antonio Córdoba and Charles Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), no. 11, 979–1005. MR 507783, DOI 10.1080/03605307808820083
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 0166596
- Allan Greenleaf, Principal curvature and harmonic analysis, Indiana Univ. Math. J. 30 (1981), no. 4, 519–537. MR 620265, DOI 10.1512/iumj.1981.30.30043 J. Hadamard, Lectures on Cauchy’s problem, New Haven, 1923. P. D. Lax, Lectures on hyperbolic P.D.E, Stanford Univ., 1963. J. Leray, Lecture notes in hyperbolic equations, Princeton Univ., 1952.
- Donald Ludwig, Exact and asymptotic solutions of the Cauchy problem, Comm. Pure Appl. Math. 13 (1960), 473–508. MR 115010, DOI 10.1002/cpa.3160130310 —, The singularities of the Riemann function, AEC Comput. Appl. Math. Center, Inst. Math. Sci., New York University, 1961.
- Marcel Riesz, L’intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math. 81 (1949), 1–223 (French). MR 30102, DOI 10.1007/BF02395016
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 287 (1985), 167-188
- MSC: Primary 35L15
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766212-9
- MathSciNet review: 766212