The duration of transients
HTML articles powered by AMS MathViewer
- by S. Pelikan
- Trans. Amer. Math. Soc. 287 (1985), 215-221
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766215-4
- PDF | Request permission
Abstract:
A transformation $T$ defined on $X \subset {{\mathbf {R}}^n}$ for which $T(X) \supset X$ is considered. A transient in $X$ is a trajectory $x,Tx, \ldots ,{T^m}x \subset X$ so that ${T^{m + 1}}x \notin X$. In this case, $m$ is the duration of the transient. A method for estimating the average duration of transients is given, and an example of a transformation with exceedingly long transients is described.References
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Second revised edition, Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 2008. With a preface by David Ruelle; Edited by Jean-René Chazottes. MR 2423393
- Celso Grebogi, Edward Ott, and James A. Yorke, Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation, Phys. Rev. Lett. 50 (1983), no. 13, 935–938. MR 699395, DOI 10.1103/PhysRevLett.50.935
- Giulio Pianigiani and James A. Yorke, Expanding maps on sets which are almost invariant. Decay and chaos, Trans. Amer. Math. Soc. 252 (1979), 351–366. MR 534126, DOI 10.1090/S0002-9947-1979-0534126-2
- James A. Yorke and Ellen D. Yorke, Metastable chaos: the transition to sustained chaotic behavior in the Lorenz model, J. Statist. Phys. 21 (1979), no. 3, 263–277. MR 542050, DOI 10.1007/BF01011469
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 287 (1985), 215-221
- MSC: Primary 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766215-4
- MathSciNet review: 766215