Periodic solutions of Hamilton’s equations and local minima of the dual action
HTML articles powered by AMS MathViewer
- by Frank H. Clarke
- Trans. Amer. Math. Soc. 287 (1985), 239-251
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766217-8
- PDF | Request permission
Abstract:
The dual action is a functional whose extremals lead to solutions of Hamilton’s equations. Up to now, extremals of the dual action have been obtained either through its global minimization or through application of critical point theory. A new methodology is introduced in which local minima of the dual action are found to exist. Applications are then made to the existence of Hamiltonian trajectories having prescribed period.References
- Antonio Ambrosetti and Giovanni Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann. 255 (1981), no. 3, 405–421. MR 615860, DOI 10.1007/BF01450713
- Antonio Ambrosetti and Giovanni Mancini, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories, J. Differential Equations 43 (1982), no. 2, 249–256. MR 647065, DOI 10.1016/0022-0396(82)90093-6
- Melvyn S. Berger, Critical point theory for nonlinear eigenvalue problems with indefinite principal part, Trans. Amer. Math. Soc. 186 (1973), 151–169. MR 341210, DOI 10.1090/S0002-9947-1973-0341210-X
- Haïm Brézis, Jean-Michel Coron, and Louis Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980), no. 5, 667–684. MR 586417, DOI 10.1002/cpa.3160330507
- Frank H. Clarke, The Euler-Lagrange differential inclusion, J. Differential Equations 19 (1975), no. 1, 80–90. MR 388196, DOI 10.1016/0022-0396(75)90020-0 —, Solutions périodique des équations hamiltoniennes, C. R. Acad. Sci. Paris Sér. A 287 (1978), 951-952.
- Frank H. Clarke, A classical variational principle for periodic Hamiltonian trajectories, Proc. Amer. Math. Soc. 76 (1979), no. 1, 186–188. MR 534415, DOI 10.1090/S0002-9939-1979-0534415-7
- Frank H. Clarke, Periodic solutions to Hamiltonian inclusions, J. Differential Equations 40 (1981), no. 1, 1–6. MR 614215, DOI 10.1016/0022-0396(81)90007-3
- Frank H. Clarke, On Hamiltonian flows and symplectic transformations, SIAM J. Control Optim. 20 (1982), no. 3, 355–359. MR 652212, DOI 10.1137/0320027
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- Frank H. Clarke and Ivar Ekeland, Solutions périodiques, de période donnée, des équations hamiltoniennes, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 15, A1013–A1015 (French, with English summary). MR 519230
- Frank H. Clarke and Ivar Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33 (1980), no. 2, 103–116. MR 562546, DOI 10.1002/cpa.3160330202
- Frank H. Clarke and I. Ekeland, Nonlinear oscillations and boundary value problems for Hamiltonian systems, Arch. Rational Mech. Anal. 78 (1982), no. 4, 315–333. MR 653545, DOI 10.1007/BF00249584
- F. H. Clarke and R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc. 289 (1985), no. 1, 73–98. MR 779053, DOI 10.1090/S0002-9947-1985-0779053-3 —, Regularity and existence in the small in the calculus of variations, J. Differential Equations (to appear). N. Desolneux-Moulis, Orbites périodiques des systèmes hamiltoniens autonomes, Semin. Bourbaki 32 (1979), No. 552.
- Ivar Ekeland, Periodic solutions of Hamiltonian equations and a theorem of P. Rabinowitz, J. Differential Equations 34 (1979), no. 3, 523–534. MR 555325, DOI 10.1016/0022-0396(79)90034-2
- Ivar Ekeland and Jean-Michel Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. of Math. (2) 112 (1980), no. 2, 283–319. MR 592293, DOI 10.2307/1971148
- M. Girardi and M. Matzeu, Some results on solutions of minimal period to superquadratic Hamiltonian systems, Nonlinear Anal. 7 (1983), no. 5, 475–482. MR 698360, DOI 10.1016/0362-546X(83)90039-1
- Giovanni Mancini, Periodic solutions of Hamiltonian systems having prescribed minimal period, Advances in Hamiltonian systems (Rome, 1981) Ann. CEREMADE, Birkhäuser Boston, Boston, MA, 1983, pp. 43–72 (English, with French summary). MR 716154
- Paul H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), no. 2, 157–184. MR 467823, DOI 10.1002/cpa.3160310203
- Paul H. Rabinowitz, A variational method for finding periodic solutions of differential equations, Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977) Publ. Math. Res. Center Univ. Wisconsin, vol. 40, Academic Press, New York-London, 1978, pp. 225–251. MR 513821 —, Periodic solutions of Hamiltonian systems: a suvey, SIAM J. Math. Anal. 13 (1982), 343-352.
- Alan Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math. (2) 108 (1978), no. 3, 507–518. MR 512430, DOI 10.2307/1971185
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 287 (1985), 239-251
- MSC: Primary 58F05; Secondary 34C25, 58E30, 58F22, 70H05
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766217-8
- MathSciNet review: 766217