A method for investigating geometric properties of support points and applications
HTML articles powered by AMS MathViewer
- by Johnny E. Brown
- Trans. Amer. Math. Soc. 287 (1985), 285-291
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766220-8
- PDF | Request permission
Abstract:
A normalized univalent function $f$ is a support point of $S$ if there exists a continuous linear functional $L$ (which is nonconstant on $S$) for which $f$ maximizes $\operatorname {Re} L(g),g \in S$. For such functions it is known that $\Gamma = {\text {C}} - f(U)$ is a single analytic arc that is part of a trajectory of a certain quadratic differential $Q(w)\;d{w^2}$. A method is developed which is used to study geometric properties of support points. This method depends on consideration of $\operatorname {Im} \{ {w^2}Q(w)\}$ rather than the usual $\operatorname {Re} \{ {w^2}Q(w)\}$. Qualitative, as well as quantitative, applications are obtained. Results related to the Bieberbach conjecture when the extremal functions have initial real coefficients are also obtained.References
- L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, S.-B. Preuss. Akad. Wiss. (1916), 940-955.
- Enrico Bombieri, A geometric approach to some coefficient inequalities for univalent functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 377–397. MR 239071
- Louis Brickman and Donald Wilken, Support points of the set of univalent functions, Proc. Amer. Math. Soc. 42 (1974), 523–528. MR 328057, DOI 10.1090/S0002-9939-1974-0328057-1
- Johnny E. Brown, Univalent functions maximizing $\textrm {Re}\{a_{3}+\lambda a_{2}\}$, Illinois J. Math. 25 (1981), no. 3, 446–454. MR 620430
- Z. Charzyński and M. Schiffer, A geometric proof of the Bieberbach conjecture for the fourth coefficient, Scripta Math. 25 (1960), 173–181. MR 118846
- Peter L. Duren, Extreme points of spaces of univalent functions, Linear spaces and approximation (Proc. Conf., Math. Res. Inst., Oberwolfach, 1977) Internat. Ser. Numer. Math., Vol. 40, Birkhäuser, Basel, 1978, pp. 471–477. MR 0499130
- James A. Jenkins, Univalent functions and conformal mapping, Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0096806
- W. E. Kirwan and Richard Pell, Extremal properties of a class of slit conformal mappings, Michigan Math. J. 25 (1978), no. 2, 223–232. MR 486483
- Albert Pfluger, Lineare Extremalprobleme bei schlichten Funktionen, Ann. Acad. Sci. Fenn. Ser. A. I. 489 (1971), 32 (German). MR 296276
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
- A. C. Schaeffer and D. C. Spencer, Coefficient Regions for Schlicht Functions, American Mathematical Society Colloquium Publications, Vol. 35, American Mathematical Society, New York, N. Y., 1950. With a Chapter on the Region of the Derivative of a Schlicht Function by Arthur Grad. MR 0037908 M. Schiffer, A method of variation within the family of simple functions, Proc. London Math. Soc. (2) 44 (1938), 432-449.
- Menahem Schiffer, On the coefficient problem for univalent functions, Trans. Amer. Math. Soc. 134 (1968), 95–101. MR 228670, DOI 10.1090/S0002-9947-1968-0228670-8
- Glenn Schober, Univalent functions—selected topics, Lecture Notes in Mathematics, Vol. 478, Springer-Verlag, Berlin-New York, 1975. MR 0507770
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 287 (1985), 285-291
- MSC: Primary 30C55; Secondary 30C50
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766220-8
- MathSciNet review: 766220