Fractional integrals on weighted $H^ p$ and $L^ p$ spaces
HTML articles powered by AMS MathViewer
- by Jan-Olov Strömberg and Richard L. Wheeden
- Trans. Amer. Math. Soc. 287 (1985), 293-321
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766221-X
- PDF | Request permission
Abstract:
We study the two weight function problem $\parallel {I_\alpha }f{\parallel _{H_u^q}} \leqslant c\parallel f{\parallel _{H_v^p}},0 < p \leqslant q < \infty$ , for fractional integrals on Hardy spaces. If $u$ and $v$ satisfy the doubling condition and $0 < p \leqslant 1$, we obtain a necessary and sufficient condition for the norm inequality to hold. If $1 < p < \infty$ we obtain a necessary condition and a sufficient condition, and show these are the same under various additional conditions on $u$ and $v$. We also consider the corresponding problem for $L_u^q$ and $L_v^p$, and obtain a necessary and sufficient condition in some cases.References
- David R. Adams, A trace inequality for generalized potentials, Studia Math. 48 (1973), 99–105. MR 336316, DOI 10.4064/sm-48-1-99-105
- Ernst Adams, On the identification of weighted Hardy spaces, Indiana Univ. Math. J. 32 (1983), no. 4, 477–489. MR 703279, DOI 10.1512/iumj.1983.32.32034
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Björn E. J. Dahlberg, Regularity properties of Riesz potentials, Indiana Univ. Math. J. 28 (1979), no. 2, 257–268. MR 523103, DOI 10.1512/iumj.1979.28.28018
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 2. Spaces of fundamental and generalized functions, Academic Press, New York-London, 1968. Translated from the Russian by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer. MR 0230128
- Kurt Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), no. 1, 77–102. MR 567435, DOI 10.7146/math.scand.a-11827 R. Kerman and E. Sawyer, Weighted norm inequalities of trace type for potential operators, preprint.
- Steven G. Krantz, Fractional integration on Hardy spaces, Studia Math. 73 (1982), no. 2, 87–94. MR 667967, DOI 10.4064/sm-73-2-87-94
- Roberto A. Macías and Carlos Segovia, Weighted norm inequalities for parabolic fractional integrals, Studia Math. 61 (1977), no. 3, 279–291. MR 492116, DOI 10.4064/sm-61-3-279-291
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Benjamin Muckenhoupt and Richard Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. MR 340523, DOI 10.1090/S0002-9947-1974-0340523-6
- Eric T. Sawyer, Weighted norm inequalities for fractional maximal operators, 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980) CMS Conf. Proc., vol. 1, Amer. Math. Soc., Providence, R.I., 1981, pp. 283–309. MR 670111
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 J.-O. Strömberg and A. Torchinsky, Weighted Hardy spaces (to appear). J.-O. Strömberg and R. L. Wheeden, Relations between $H_u^p$ and $L_u^p$ with polynomial weights, Trans. Amer. Math. Soc. 270 (1982), 439-467. —, Kernel estimates for fractional integrals with polynomial weights (to appear).
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 287 (1985), 293-321
- MSC: Primary 42B30; Secondary 26A33, 47G05
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766221-X
- MathSciNet review: 766221