Of planar Eulerian graphs and permutations
HTML articles powered by AMS MathViewer
- by Gadi Moran
- Trans. Amer. Math. Soc. 287 (1985), 323-341
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766222-1
- PDF | Request permission
Abstract:
Infinite planar Eulerian graphs are used to show that for $v > 0$ the covering number of the infinite simple group ${H_v} = S/{S^v}$ is two. Here $S$ denotes the group of all permutations of a set of cardinality ${\aleph _v},{S^v}$ denotes its subgroup consisting of the permutations moving less than ${\aleph _v}$ elements, and the covering number of a (simple) group $G$ is the smallest positive integer $n$ satisfying ${C^n} = G$ for every nonunit conjugacy class $C$ in $G$.References
- Zvi Arad, David Chillag, and Gadi Moran, Groups with a small covering number, Products of conjugacy classes in groups, Lecture Notes in Math., vol. 1112, Springer, Berlin, 1985, pp. 222–244. MR 783071, DOI 10.1007/BFb0072289
- Z. Arad, J. Stavi, and M. Herzog, Powers and products of conjugacy classes in groups, Products of conjugacy classes in groups, Lecture Notes in Math., vol. 1112, Springer, Berlin, 1985, pp. 6–51. MR 783068, DOI 10.1007/BFb0072286
- Manfred Droste, Products of conjugacy classes of the infinite symmetric groups, Discrete Math. 47 (1983), no. 1, 35–48. MR 720606, DOI 10.1016/0012-365X(83)90070-5
- Ralph H. Fox, On Fenchel’s conjecture about $F$-groups, Mat. Tidsskr. B 1952 (1952), 61–65. MR 53937 A. B. Gray, Infinite symmetric and monomial groups, Ph. D. Thesis, New Mexico State University, Las Cruces, 1960.
- Xu Cheng-hao, The commutators of the alternating group, Sci. Sinica 14 (1965), 339–342. MR 183763
- Shimy Karni, Covering numbers of groups of small order and sporadic groups, Products of conjugacy classes in groups, Lecture Notes in Math., vol. 1112, Springer, Berlin, 1985, pp. 52–196. MR 783069, DOI 10.1007/BFb0072287
- G. A. Miller, On the Product of Two Substitutions, Amer. J. Math. 22 (1900), no. 2, 185–190. MR 1505829, DOI 10.2307/2369754
- Gadi Moran, Parity features for classes of the infinite symmetric group, J. Combin. Theory Ser. A 33 (1982), no. 1, 82–98. MR 665658, DOI 10.1016/0097-3165(82)90081-4 —, Products of conjugacy classes in some infinite simple groups (to appear).
- W. R. Scott, Group theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0167513
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 287 (1985), 323-341
- MSC: Primary 05C25; Secondary 05C10, 05C45, 20B07, 20B22, 57M25
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766222-1
- MathSciNet review: 766222