Fuchsian groups and algebraic number fields
HTML articles powered by AMS MathViewer
- by P. L. Waterman and C. Maclachlan
- Trans. Amer. Math. Soc. 287 (1985), 353-364
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766224-5
- PDF | Request permission
Abstract:
Given the signature of a finitely-generated Fuchsian group, we find the minimal extension of the rationals for which there is a Fuchsian group having the required signature, whose matrix entries lie in this field.References
- Lipman Bers, On boundaries of Teichmüller spaces and on Kleinian groups. I, Ann. of Math. (2) 91 (1970), 570–600. MR 297992, DOI 10.2307/1970638
- Allan L. Edmonds, John H. Ewing, and Ravi S. Kulkarni, Torsion free subgroups of Fuchsian groups and tessellations of surfaces, Invent. Math. 69 (1982), no. 3, 331–346. MR 679761, DOI 10.1007/BF01389358
- Allan L. Edmonds, John H. Ewing, and Ravi S. Kulkarni, Regular tessellations of surfaces and $(p,\,q,\,2)$-triangle groups, Ann. of Math. (2) 116 (1982), no. 1, 113–132. MR 662119, DOI 10.2307/2007049
- Allan L. Edmonds, Ravi S. Kulkarni, and Robert E. Stong, Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc. 282 (1984), no. 2, 773–790. MR 732119, DOI 10.1090/S0002-9947-1984-0732119-5
- Leon Greenberg, Homomorphisms of triangle groups into $\textrm {PSL}(2,\,\textbf {C})$, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 167–181. MR 624813 —, Homomorphisms of triangle groups into ${\text {SO}}(3)$, Modular Functions in Analysis and Number Theory, (T. Metzer, ed.), Univ. of Pittsburgh, 1983. —, Homomorphisms and quadratic differentials of triangle groups (unpublished).
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
- A. W. Knapp, Doubly generated Fuchsian groups, Michigan Math. J. 15 (1968), 289–304. MR 248231
- Ravi S. Kulkarni, An extension of a theorem of Kurosh and applications to Fuchsian groups, Michigan Math. J. 30 (1983), no. 3, 259–272. MR 725780
- J. Lehner and M. Newman, Real two-dimensional representations of the modular group and related groups, Amer. J. Math. 87 (1965), 945–954. MR 188298, DOI 10.2307/2373255
- J. Lehner and M. Newman, Real two-dimensional representations of the free product of two finite cyclic groups, Proc. Cambridge Philos. Soc. 62 (1966), 135–141. MR 193159, DOI 10.1017/s0305004100039669
- W. Magnus, Rational representations of Fuchsian groups and non-parabolic subgroups of the modular group, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1973), 179–189. MR 346069
- Jens Mennicke, A note on regular coverings of closed orientable surfaces, Proc. Glasgow Math. Assoc. 5 (1961), 49–66 (1961). MR 161910
- M. H. Millington, Subgroups of the classical modular group, J. London Math. Soc. (2) 1 (1969), 351–357. MR 244160, DOI 10.1112/jlms/s2-1.1.351
- Kisao Takeuchi, Fuchsian groups contained in $\textrm {SL}_{2}\,({\bf {\rm }Q})$, J. Math. Soc. Japan 23 (1971), 82–94. MR 271342, DOI 10.2969/jmsj/02310082 P. L. Waterman, Fuchsian groups and algebraic number fields, Thesis, Aberdeen, 1982.
- André Weil, On discrete subgroups of Lie groups, Ann. of Math. (2) 72 (1960), 369–384. MR 137792, DOI 10.2307/1970140
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 287 (1985), 353-364
- MSC: Primary 20H10; Secondary 11F06, 32G15
- DOI: https://doi.org/10.1090/S0002-9947-1985-0766224-5
- MathSciNet review: 766224