Asymptotic expansions of ratios of coefficients of orthogonal polynomials with exponential weights
HTML articles powered by AMS MathViewer
- by Attila Máté, Paul Nevai and Thomas Zaslavsky PDF
- Trans. Amer. Math. Soc. 287 (1985), 495-505 Request permission
Abstract:
Let ${p_n}(x) = {\gamma _n}{x^n} + \cdots$ denote the $n$th polynomial orthonormal with respect to the weight $\exp ( - {x^\beta }/\beta )$ where $\beta > 0$ is an even integer. G. Freud conjectured and Al. Magnus proved that, writing ${a_n} = {\gamma _{n - 1}}/{\gamma _n}$, the expression ${a_n}{n^{ - 1/\beta }}$ has a limit as $n \to \infty$. It is shown that this expression has an asymptotic expansion in terms of negative even powers of $n$. In the course of this, a combinatorial enumeration problem concerning one-dimensional lattice walk is solved and its relationship to a combinatorial identity of J. L. W. V. Jensen is explored.References
-
G. Freud, Orthogonal polynomials, Pergamon Press, Oxford and New York, 1966.
—, On the greatest zero of an orthogonal polynomial, Acta Sci. Math. Szeged 24 (1973), 91-97.
- Géza Freud, On the coefficients in the recursion formulae of orthogonal polynomials, Proc. Roy. Irish Acad. Sect. A 76 (1976), no. 1, 1–6. MR 419895
- H. W. Gould, Generalization of a theorem of Jensen concerning convolutions, Duke Math. J. 27 (1960), 71–76. MR 114766
- H. W. Gould and J. Kaucký, Evaluation of a class of binomial coefficient summations, J. Combinatorial Theory 1 (1966), 233–247. MR 210607
- Peter Henrici, Applied and computational complex analysis. Vol. 2, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Special functions—integral transforms—asymptotics—continued fractions. MR 0453984
- J. L. W. V. Jensen, Sur une identité d’Abel et sur d’autres formules analogues, Acta Math. 26 (1902), no. 1, 307–318 (French). MR 1554966, DOI 10.1007/BF02415499
- Charles Jordan, Calculus of finite differences, 3rd ed., Chelsea Publishing Co., New York, 1965. Introduction by Harry C. Carver. MR 0183987
- Donald E. Knuth, The art of computer programming, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms. MR 0378456
- John S. Lew and Donald A. Quarles Jr., Nonnegative solutions of a nonlinear recurrence, J. Approx. Theory 38 (1983), no. 4, 357–379. MR 711463, DOI 10.1016/0021-9045(83)90154-5
- Attila Máté and Paul Nevai, Asymptotics for solutions of smooth recurrence equations, Proc. Amer. Math. Soc. 93 (1985), no. 3, 423–429. MR 773995, DOI 10.1090/S0002-9939-1985-0773995-6
- H. N. Mhaskar and E. B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), no. 1, 203–234. MR 748838, DOI 10.1090/S0002-9947-1984-0748838-0
- Paul G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213, v+185. MR 519926, DOI 10.1090/memo/0213 —, Orthogonal polynomials associated with $\exp ({x^{ - 4}})$, Canadian Math. Soc. Conference Proc. 3 (1983), 263-285. —, Asymptotics for orthogonal polynomials associated with $\exp ({x^{ - 4}})$, SIAM J. Math. Anal. 15 (1984).
- E. A. Rakhmanov, Asymptotic properties of orthogonal polynomials on the real axis, Mat. Sb. (N.S.) 119(161) (1982), no. 2, 163–203, 303 (Russian). MR 675192 G. Szegö, Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, R.I., 1978.
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587 Al. Magnus, A proof of Freud’s conjecture about the orthogonal polynomials related to $|x{|^\rho }\exp ( - {x^{2m}})$ for integer $m$ (manuscript).
Additional Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 287 (1985), 495-505
- MSC: Primary 42C05; Secondary 05A15
- DOI: https://doi.org/10.1090/S0002-9947-1985-0768722-7
- MathSciNet review: 768722