Unstable towers in the odd primary homotopy groups of spheres
HTML articles powered by AMS MathViewer
- by Martin Bendersky
- Trans. Amer. Math. Soc. 287 (1985), 529-542
- DOI: https://doi.org/10.1090/S0002-9947-1985-0768724-0
- PDF | Request permission
Abstract:
The unstable elements in filtration $2$ of the unstable Novikov spectral sequence are computed. These elements are shown to survive to elements in the homotopy groups of spheres which are related to $\operatorname {Im} J$. The computation is applied to determine the Hopf invariants of compositions of $\operatorname {Im} J$ and the exponent of certain sphere bundles over spheres.References
- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0402720
- Martin Bendersky, Some calculations in the unstable Adams-Novikov spectral sequence, Publ. Res. Inst. Math. Sci. 16 (1980), no.Β 3, 739β766. MR 602467, DOI 10.2977/prims/1195186928
- Martin Bendersky, The derived functors of the primitives for $\textrm {BP}_\ast (\Omega S^{2n+1})$, Trans. Amer. Math. Soc. 276 (1983), no.Β 2, 599β619. MR 688964, DOI 10.1090/S0002-9947-1983-0688964-7 β, The $BP$ Hopf invariant (to appear).
- M. Bendersky, E. B. Curtis, and H. R. Miller, The unstable Adams spectral sequence for generalized homology, Topology 17 (1978), no.Β 3, 229β248. MR 508887, DOI 10.1016/0040-9383(78)90028-9
- M. Bendersky, E. B. Curtis, and D. Ravenel, $EHP$ sequences in BP theory, Topology 21 (1982), no.Β 4, 373β391. MR 670742, DOI 10.1016/0040-9383(82)90018-0
- F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. (2) 110 (1979), no.Β 3, 549β565. MR 554384, DOI 10.2307/1971238
- G. Cooke, J. R. Harper, and A. Zabrodsky, Torsion free $\textrm {mod}\,p$ $H$-spaces of low rank, Topology 18 (1979), no.Β 4, 349β359. MR 551016, DOI 10.1016/0040-9383(79)90025-9
- Brayton Gray, On the sphere of origin of infinite families in the homotopy groups of spheres, Topology 8 (1969), 219β232. MR 245008, DOI 10.1016/0040-9383(69)90012-3
- Tsunekazu Kambe, Hiromichi Matsunaga, and Hirosi Toda, A note on stunted lens space, J. Math. Kyoto Univ. 5 (1966), 143β149. MR 190929, DOI 10.1215/kjm/1250524531
- Peter S. Landweber, Invariant regular ideals in Brown-Peterson homology, Duke Math. J. 42 (1975), no.Β 3, 499β505. MR 385859 M. E. Mahowald, The meta-stable homotopy of ${S^n}$, Mem. Amer. Math. Soc. No. 72, 1967.
- Mark Mahowald, The image of $J$ in the $EHP$ sequence, Ann. of Math. (2) 116 (1982), no.Β 1, 65β112. MR 662118, DOI 10.2307/2007048
- Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. (2) 106 (1977), no.Β 3, 469β516. MR 458423, DOI 10.2307/1971064
- ShichirΓ΄ Oka, On the homotopy groups of sphere bundles over spheres, J. Sci. Hiroshima Univ. Ser. A-I Math. 33 (1969), 161β195. MR 258035
- Paul Selick, Odd primary torsion in $\pi _{k}(S^{3})$, Topology 17 (1978), no.Β 4, 407β412. MR 516219, DOI 10.1016/0040-9383(78)90007-1
- Hirosi Toda, On iterated suspensions. I, II, J. Math. Kyoto Univ. 5 (1966), 87β142, 209β250. MR 210130, DOI 10.1215/kjm/1250524559 B. Gray, Unstable families related to the image of $J$ (to appear).
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 287 (1985), 529-542
- MSC: Primary 55Q40; Secondary 55N22
- DOI: https://doi.org/10.1090/S0002-9947-1985-0768724-0
- MathSciNet review: 768724