Finely harmonic functions with finite Dirichlet integral with respect to the Green measure
HTML articles powered by AMS MathViewer
- by Bernt Øksendal
- Trans. Amer. Math. Soc. 287 (1985), 687-700
- DOI: https://doi.org/10.1090/S0002-9947-1985-0768734-3
- PDF | Request permission
Abstract:
We consider finely harmonic functions $h$ on a fine, Greenian domain $V \subset {{\mathbf {R}}^d}$ with finite Dirichlet integral wrt $Gm$, i.e. $(\ast )$ \[ \int _V|\nabla h(y)|^2G(x,y) dm(y) < \infty \quad {\text {for}}\;x \in V,\] where $m$ denotes the Lebesgue measure, $G(x,y)$ the Green function. We use Brownian motion and stochastic calculus to prove that such functions $h$ always have boundary values ${h^\ast }$ along a.a. Brownian paths. This partially extends results by Doob, Brelot and Godefroid, who considered ordinary harmonic functions with finite Dirichlet integral wrt $m$ and Green lines instead of Brownian paths. As a consequence of Theorem 1 we obtain several properties equivalent to $( \ast )$, one of these being that $h$ is the harmonic extension to $V$ of a random "boundary" function ${h^\ast }$ (of a certain type), i.e. $h(x) = {E^x}[{h^\ast }]$ for all $x \in V$. Another application is that the polar sets are removable singularity sets for finely harmonic functions satisfying $( \ast )$. This is in contrast with the situation for finely harmonic functions with finite Dirichlet integral wrt $m$.References
- Marcel Brelot, On topologies and boundaries in potential theory, Lecture Notes in Mathematics, Vol. 175, Springer-Verlag, Berlin-New York, 1971. Enlarged edition of a course of lectures delivered in 1966. MR 0281940
- D. L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math. 26 (1977), no. 2, 182–205. MR 474525, DOI 10.1016/0001-8708(77)90029-9
- Kai Lai Chung, Lectures from Markov processes to Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 249, Springer-Verlag, New York-Berlin, 1982. MR 648601
- A. Debiard and B. Gaveau, Différentiabilité des fonctions finement harmoniques, Invent. Math. 29 (1975), no. 2, 111–123. MR 399489, DOI 10.1007/BF01390189
- J. L. Doob, Applications to analysis of a topological definition of smallness of a set, Bull. Amer. Math. Soc. 72 (1966), 579–600. MR 203665, DOI 10.1090/S0002-9904-1966-11533-1
- J. L. Doob, Boundary properties for functions with finite Dirichlet integrals, Ann. Inst. Fourier (Grenoble) 12 (1962), 573–621. MR 173783 E. B. Dynkin, Markov processes. I, Springer-Verlag, 1965.
- Bent Fuglede, Finely harmonic functions, Lecture Notes in Mathematics, Vol. 289, Springer-Verlag, Berlin-New York, 1972. MR 0450590
- Bent Fuglede, Fonctions harmoniques et fonctions finement harmoniques, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 4, ix-x, 77–91 (1975) (French, with English summary). MR 367248 —, Functions $BLD$ et functions finement surharmonique, Université de Paris 6: Séminaire de Théorie du Potentiel, No. 6, 1982, pp. 126-157.
- Bent Fuglede, Integral representation of fine potentials, Math. Ann. 262 (1983), no. 2, 191–214. MR 690195, DOI 10.1007/BF01455311
- Masatoshi Fukushima, Dirichlet forms and Markov processes, North-Holland Mathematical Library, vol. 23, North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1980. MR 569058
- Bernt Øksendal, Stochastic differential equations, 4th ed., Universitext, Springer-Verlag, Berlin, 1995. An introduction with applications. MR 1411679, DOI 10.1007/978-3-662-03185-8
- B. Øksendal, Finely harmonic morphisms, Brownian path preserving functions and conformal martingales, Invent. Math. 75 (1984), no. 1, 179–187. MR 728145, DOI 10.1007/BF01403096
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 287 (1985), 687-700
- MSC: Primary 60J45; Secondary 31C05, 60J65
- DOI: https://doi.org/10.1090/S0002-9947-1985-0768734-3
- MathSciNet review: 768734