## Pull-backs of $C^ \ast$-algebras and crossed products by certain diagonal actions

HTML articles powered by AMS MathViewer

- by Iain Raeburn and Dana P. Williams PDF
- Trans. Amer. Math. Soc.
**287**(1985), 755-777 Request permission

## Abstract:

Let $G$ be a locally compact group and $p:\Omega \to T$ a principal $G$-bundle. If $A$ is a ${C^\ast }$-algebra with primitive ideal space $T$, the pull-back ${p^\ast }A$ of $A$ along $p$ is the balanced tensor product ${C_0}(\Omega ){ \otimes _{C(T)}}A$. If $\beta :G \to \operatorname {Aut} A$ consists of $C(T)$-module automorphisms, and $\gamma :G \to \operatorname {Aut} {C_0}(\Omega )$ is the natural action, then the automorphism group $\gamma \otimes \beta$ of ${C_0}(\Omega ) \otimes A$ respects the balancing and induces the diagonal action ${p^\ast }\beta$ of $G$ on ${p^\ast }A$. We discuss some examples of such actions and study the crossed product ${p^\ast }A{ \times _{{p^\ast }\beta }}G$. We suggest a substitute $D$ for the fixed-point algebra, prove ${p^\ast }A \times G$ is strongly Morita equivalent to $D$, and investigate the structure of $D$ in various cases. In particular, we ask when $D$ is strongly Morita equivalent to $A$—sometimes, but by no means always—and investigate the case where $A$ has continuous trace.## References

- Walter Beer,
*On Morita equivalence of nuclear $C^{\ast }$-algebras*, J. Pure Appl. Algebra**26**(1982), no. 3, 249–267. MR**678523**, DOI 10.1016/0022-4049(82)90109-8 - Bruce E. Blackadar,
*Infinite tensor products of $C^*$-algebras*, Pacific J. Math.**72**(1977), no. 2, 313–334. MR**512361**
O. Bratteli, - Jacques Dixmier,
*$C^*$-algebras*, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR**0458185** - J. Dixmier,
*Champs continus d’espaces hilbertiens et de $C^{\ast }$-algèbres. II*, J. Math. Pures Appl. (9)**42**(1963), 1–20 (French). MR**150608** - Jacques Dixmier and Adrien Douady,
*Champs continus d’espaces hilbertiens et de $C^{\ast }$-algèbres*, Bull. Soc. Math. France**91**(1963), 227–284 (French). MR**163182** - J. M. G. Fell,
*An extension of Mackey’s method to Banach $^{\ast }$ algebraic bundles*, Memoirs of the American Mathematical Society, No. 90, American Mathematical Society, Providence, R.I., 1969. MR**0259619**
—, - Philip Green,
*$C^*$-algebras of transformation groups with smooth orbit space*, Pacific J. Math.**72**(1977), no. 1, 71–97. MR**453917** - Philip Green,
*The local structure of twisted covariance algebras*, Acta Math.**140**(1978), no. 3-4, 191–250. MR**493349**, DOI 10.1007/BF02392308 - Richard V. Kadison and John R. Ringrose,
*Derivations and automorphisms of operator algebras*, Comm. Math. Phys.**4**(1967), 32–63. MR**206735**
M. B. Landstad, J. Phillips, I. Raeburn and C. E. Sutherland, - Calvin C. Moore,
*Extensions and low dimensional cohomology theory of locally compact groups. I, II*, Trans. Amer. Math. Soc.**113**(1964), 40–63; ibid. 113 (1964), 64–86. MR**171880**, DOI 10.1090/S0002-9947-1964-0171880-5 - Paul S. Muhly and Dana P. Williams,
*Transformation group $C^{\ast }$-algebras with continuous trace. II*, J. Operator Theory**11**(1984), no. 1, 109–124. MR**739796** - John Phillips and Iain Raeburn,
*Automorphisms of $C^{\ast }$-algebras and second Čech cohomology*, Indiana Univ. Math. J.**29**(1980), no. 6, 799–822. MR**589649**, DOI 10.1512/iumj.1980.29.29058 - John Phillips and Iain Raeburn,
*Perturbations of $C^{\ast }$-algebras. II*, Proc. London Math. Soc. (3)**43**(1981), no. 1, 46–72. MR**623718**, DOI 10.1112/plms/s3-43.1.46 - John Phillips and Iain Raeburn,
*Crossed products by locally unitary automorphism groups and principal bundles*, J. Operator Theory**11**(1984), no. 2, 215–241. MR**749160**
I. Raeburn and J. Rosenberg, - Marc A. Rieffel,
*Induced representations of $C^{\ast }$-algebras*, Advances in Math.**13**(1974), 176–257. MR**353003**, DOI 10.1016/0001-8708(74)90068-1 - Marc A. Rieffel,
*Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner*, Studies in analysis, Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New York-London, 1979, pp. 43–82. MR**546802**
—, - Masamichi Takesaki,
*Covariant representations of $C^{\ast }$-algebras and their locally compact automorphism groups*, Acta Math.**119**(1967), 273–303. MR**225179**, DOI 10.1007/BF02392085
A. Wassermann, Ph.D. dissertation, Univ. of Pennsylvania, 1981.
- Dana P. Williams,
*Transformation group $C^{\ast }$-algebras with continuous trace*, J. Functional Analysis**41**(1981), no. 1, 40–76. MR**614226**, DOI 10.1016/0022-1236(81)90061-6

*Fixedpoint algebras versus crossed products*, Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, part 1, pp. 357-359. S. Disney and I. Raeburn,

*Homogeneous*${C^\ast }$-

*algebras whose spectra are tori*, J. Austral. Math. Soc. (to appear).

*Induced representations and Banach*$^\ast$-

*algebraic bundles*, Lecture Notes in Math., vol. 582, Springer-Verlag, Berlin and New York, 1977.

*Crossed products by certain coactions and principal bundles*(in preparation).

*Crossed products by smooth actions on continuous trace*${C^\ast }$-

*algebras*(in preparation).

*Applications of strong Morita equivalence to transformation group*${C^\ast }$-

*algebras*, Operator Algebras and Applications (R. V. Kadison, ed.), Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 299-310.

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**287**(1985), 755-777 - MSC: Primary 46L05; Secondary 46L40, 46L55
- DOI: https://doi.org/10.1090/S0002-9947-1985-0768739-2
- MathSciNet review: 768739