Finite codimensional ideals in function algebras
HTML articles powered by AMS MathViewer
- by Krzysztof Jarosz
- Trans. Amer. Math. Soc. 287 (1985), 779-785
- DOI: https://doi.org/10.1090/S0002-9947-1985-0768740-9
- PDF | Request permission
Abstract:
Assume $S$ is a compact, metric space and let $M$ be a finite codimensional closed subspace of a complex space $C(S)$. In this paper we prove that if each element from $M$ has at least $k$ zeros in $S$, then for some ${s_1}, \ldots ,{s_k} \in S,M \subseteq \{ f \in C(S):f({s_1}) = \cdots = f({s_k}) = 0\}$.References
- Bernard Aupetit, Une généralisation du théorème de Gleason-Kahane-Żelazko pour les algèbres de Banach, Pacific J. Math. 85 (1979), no. 1, 11–17 (French, with English summary). MR 571623
- Chang P’ao Ch’ên, A generalization of the Gleason-Kahane-Żelazko theorem, Pacific J. Math. 107 (1983), no. 1, 81–87. MR 701808
- Nicholas Farnum and Robert Whitley, Functionals on real $C(S)$, Canadian J. Math. 30 (1978), no. 3, 490–498. MR 473798, DOI 10.4153/CJM-1978-044-8
- Andrew M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171–172. MR 213878, DOI 10.1007/BF02788714
- J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339–343. MR 226408, DOI 10.4064/sm-29-3-339-343
- S. Kowalski and Z. Słodkowski, A characterization of multiplicative linear functionals in Banach algebras, Studia Math. 67 (1980), no. 3, 215–223. MR 592387, DOI 10.4064/sm-67-3-215-223
- M. Roitman and Y. Sternfeld, When is a linear functional multiplicative?, Trans. Amer. Math. Soc. 267 (1981), no. 1, 111–124. MR 621976, DOI 10.1090/S0002-9947-1981-0621976-6
- C. Robert Warner and Robert Whitley, A characterization of regular maximal ideals, Pacific J. Math. 30 (1969), 277–281. MR 415331
- C. Robert Warner and Robert Whitley, Ideals of finite codimension in $C[0,\,1]$ and $L^{1}(\textbf {R})$, Proc. Amer. Math. Soc. 76 (1979), no. 2, 263–267. MR 537085, DOI 10.1090/S0002-9939-1979-0537085-7
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 287 (1985), 779-785
- MSC: Primary 46J10
- DOI: https://doi.org/10.1090/S0002-9947-1985-0768740-9
- MathSciNet review: 768740