The determination of the Lie algebra associated to the lower central series of a group
HTML articles powered by AMS MathViewer
- by John P. Labute
- Trans. Amer. Math. Soc. 288 (1985), 51-57
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773046-8
- PDF | Request permission
Abstract:
In this paper we determine the Lie algebra associated to the lower central series of a finitely presented group in the case where the defining relators satisfy certain independence conditions. Other central series, such as the lower $p$-central series, are treated as well.References
- N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Indust., No. 1285, Hermann, Paris, 1960 (French). MR 0132805 —, Groupes et algèbres de Lie, Chapter 2, Hermann, Paris, 1972.
- K. T. Chen, Commutator calculus and link invariants, Proc. Amer. Math. Soc. 3 (1952), 44–55. MR 46361, DOI 10.1090/S0002-9939-1952-0046361-7
- Richard M. Hain, Iterated integrals, intersection theory and link groups, Topology 24 (1985), no. 1, 45–66. MR 790675, DOI 10.1016/0040-9383(85)90044-8
- John Milnor, Isotopy of links, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 280–306. MR 0092150
- John P. Labute, Algèbres de Lie et pro-$p$-groupes définis par une seule relation, Invent. Math. 4 (1967), 142–158 (French). MR 218495, DOI 10.1007/BF01425247
- John P. Labute, On the descending central series of groups with a single defining relation, J. Algebra 14 (1970), 16–23. MR 251111, DOI 10.1016/0021-8693(70)90130-4
- John P. Labute, The lower central series of the group $\langle x, y:$ $x^{p}=1\rangle$, Proc. Amer. Math. Soc. 66 (1977), no. 2, 197–201. MR 480751, DOI 10.1090/S0002-9939-1977-0480751-0
- Michel Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. École Norm. Sup. (3) 71 (1954), 101–190 (French). MR 0088496 —, Groupes analytiques $p$-adiques, Inst. Hautes Etudes Sci. Publ. Math. No. 26 (1965), 389-603. MR 35 #188.
- Wilhelm Magnus, Über Gruppen und zugeordnete Liesche Ringe, J. Reine Angew. Math. 182 (1940), 142–149 (German). MR 3411, DOI 10.1515/crll.1940.182.142
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966. MR 0207802
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 288 (1985), 51-57
- MSC: Primary 20F40; Secondary 17B50, 20F14
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773046-8
- MathSciNet review: 773046